概述
前言
论文地址:arxiv
代码地址:github
接收单位:NeurIPS 2021
系列文章
Transformer主干网络——ViT保姆级解析
Transformer主干网络——DeiT保姆级解析
Transformer主干网络——T2T-ViT保姆级解析
Transformer主干网络——TNT保姆级解析
Transformer主干网络——PVT_V1保姆级解析
Transformer主干网络——PVT_V2保姆级解析
Transformer主干网络——Swin保姆级解析
Transformer主干网络——PatchConvNet保姆级解析
持续更新…
动机
作者出发点也是ViT的Patch embed的不足(ViT留的这个坑真的是给后人留了发论文的机会…),作者将一张图片比作文章,一篇文章由句子(patchs)构成,一个句子由单词(pixels)构成。以往的attention只对句子和句子间的关系进行建模,作者认为句子内单词和单词间的关系也不可以忽视。
- 基于以上的动机作者设计了transformer in transformer的结构,相当于transformer嵌套,内层的transformer用来建模句子内单词和单词间的attention,外层的transformer用来建模句子和句子间的attention。
- 因为引入了TNT嵌套的transformer结构所以作者设计了针对TNT的位置编码。
网络分析
首先看下完整的结构示意图,源自作者论文:
为了方便分析,本文给网络输入的数据大小为(1,3,224,224)
1、对于输入的224 * 224的图像,作者先执行了nn.Unfold的操作:
self.unfold = nn.Unfold(kernel_size=patch_size=16, stride=patch_size=16)
# input_shape (1,3,224,224)
x = self.unfold(x)
# output_shape (1,768,196)
这里196=14*14,196表示用16*16的patch可以遍历224*224次数(224/16 * 224/16)
然后768=16*16*3,前两个16是一个patch的长宽,3是彩色的三通道。相当于每个patch的pixel数。
这一步Unfold相当于卷积的“卷”过程用滑窗取出所有的块。
那么对应到图片上就是第一步将原图用分割成很多个patch了:
2、图片转单词级别的tokens:
self.proj = nn.Conv2d(in_chans, inner_dim, kernel_size=7, padding=3, stride=inner_stride)
# input_shape (1,196,768)
x = x.transpose(1, 2).reshape(B * self.num_patches, C, *self.patch_size)
# shape (196,3,16,16)
x = self.proj(x)
# shape (196,40,4,4)
x = x.reshape(B * self.num_patches, self.inner_dim, -1).transpose(1, 2)
# output_shape (196,16,40)
(196,3,16,16) 这个很好理解这是196个patch,每个patch是彩色的所以3通道,长宽是16
(196,40,4,4)这是卷积后的结果
(196,16,40)是变形后的结构,可以理解一张图有196个句子级别的tokens,每个句子级别的token有16个单词级别的tokens,每个单词级别的token的dim是40.
以上的操作得到了单词级别的tokens,对应图中所有的圈起来部分:
3、单词级别的tokens矩阵加上位置编码:
inner_tokens = self.patch_embed(x) + self.inner_pos
按位相加shape不变!
这个inner_pos和ViT一样的,硬训一个位置编码。
4、图片转句子级别的tokens:
由于已经有单词级别的tokens了所以句子级别的tokens可以直接由单词级别的tokens组成:
self.proj_norm1 = norm_layer(num_words * inner_dim)
self.proj = nn.Linear(num_words * inner_dim, outer_dim)
self.proj_norm2 = norm_layer(outer_dim)
# input_shape (196, 16, 40)
outer_tokens = self.proj_norm2(self.proj(self.proj_norm1(inner_tokens.reshape(B, self.num_patches, -1))))
# output_shape (1, 196, 640)
(1, 196, 640)就是一张图由196个句子级别的tokens构成,每个tokens的dim是640
那么上述就完成了本文最重要的部分,组成句子级别的tokens和单词级别的tokens!对应图示:
5、句子级别的tokens拼接分类头用于分类:
# input_shape (1,196,640)
outer_tokens = torch.cat((self.cls_token.expand(B, -1, -1), outer_tokens), dim=1)
# output_shape (1,197,640)
6、句子级别的tokens矩阵加上位置编码:
outer_tokens = outer_tokens + self.outer_pos
按位相加shape不变!
这个outer_pos和ViT一样的,硬训一个位置编码。
outer_tokens = self.pos_drop(outer_tokens)
加drop path
7、接下来就是把word tokens和sentence tokens一起送到block中,
这个block和ViT的block一样,但是因为这里的输出有两种tokens,
所以有一下的变动,看图!整个block的返回是红色圈出来的两个部分!
完结撒花~
再好的模型,也得经得起业务的考验,自己数据集上的实验效果会在后续更新出…
完整测试代码
# 2021.06.15-Changed for implementation of TNT model
# Huawei Technologies Co., Ltd. <foss@huawei.com>
""" Vision Transformer (ViT) in PyTorch
A PyTorch implement of Vision Transformers as described in
'An Image Is Worth 16 x 16 Words: Transformers for Image Recognition at Scale' - https://arxiv.org/abs/2010.11929
The official jax code is released and available at https://github.com/google-research/vision_transformer
Status/TODO:
* Models updated to be compatible with official impl. Args added to support backward compat for old PyTorch weights.
* Weights ported from official jax impl for 384x384 base and small models, 16x16 and 32x32 patches.
* Trained (supervised on ImageNet-1k) my custom 'small' patch model to 77.9, 'base' to 79.4 top-1 with this code.
* Hopefully find time and GPUs for SSL or unsupervised pretraining on OpenImages w/ ImageNet fine-tune in future.
Acknowledgments:
* The paper authors for releasing code and weights, thanks!
* I fixed my class token impl based on Phil Wang's https://github.com/lucidrains/vit-pytorch ... check it out
for some einops/einsum fun
* Simple transformer style inspired by Andrej Karpathy's https://github.com/karpathy/minGPT
* Bert reference code checks against Huggingface Transformers and Tensorflow Bert
Hacked together by / Copyright 2020 Ross Wightman
"""
import torch
import torch.nn as nn
from functools import partial
import math
from timm.data import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD
from timm.models.helpers import load_pretrained
from timm.models.layers import DropPath, to_2tuple, trunc_normal_
from timm.models.resnet import resnet26d, resnet50d
from timm.models.registry import register_model
def _cfg(url='', **kwargs):
return {
'url': url,
'num_classes': 1000, 'input_size': (3, 224, 224), 'pool_size': None,
'crop_pct': .9, 'interpolation': 'bicubic',
'mean': IMAGENET_DEFAULT_MEAN, 'std': IMAGENET_DEFAULT_STD,
'first_conv': 'patch_embed.proj', 'classifier': 'head',
**kwargs
}
default_cfgs = {
'tnt_s_patch16_224': _cfg(
mean=(0.5, 0.5, 0.5), std=(0.5, 0.5, 0.5),
),
'tnt_b_patch16_224': _cfg(
mean=(0.5, 0.5, 0.5), std=(0.5, 0.5, 0.5),
),
}
def make_divisible(v, divisor=8, min_value=None):
min_value = min_value or divisor
new_v = max(min_value, int(v + divisor / 2) // divisor * divisor)
# Make sure that round down does not go down by more than 10%.
if new_v < 0.9 * v:
new_v += divisor
return new_v
class Mlp(nn.Module):
def __init__(self, in_features, hidden_features=None, out_features=None, act_layer=nn.GELU, drop=0.):
super().__init__()
out_features = out_features or in_features
hidden_features = hidden_features or in_features
self.fc1 = nn.Linear(in_features, hidden_features)
self.act = act_layer()
self.fc2 = nn.Linear(hidden_features, out_features)
self.drop = nn.Dropout(drop)
def forward(self, x):
x = self.fc1(x)
x = self.act(x)
x = self.drop(x)
x = self.fc2(x)
x = self.drop(x)
return x
class SE(nn.Module):
def __init__(self, dim, hidden_ratio=None):
super().__init__()
hidden_ratio = hidden_ratio or 1
self.dim = dim
hidden_dim = int(dim * hidden_ratio)
self.fc = nn.Sequential(
nn.LayerNorm(dim),
nn.Linear(dim, hidden_dim),
nn.ReLU(inplace=True),
nn.Linear(hidden_dim, dim),
nn.Tanh()
)
def forward(self, x):
a = x.mean(dim=1, keepdim=True) # B, 1, C
a = self.fc(a)
x = a * x
return x
class Attention(nn.Module):
def __init__(self, dim, hidden_dim, num_heads=8, qkv_bias=False, qk_scale=None, attn_drop=0., proj_drop=0.):
super().__init__()
self.hidden_dim = hidden_dim
self.num_heads = num_heads
head_dim = hidden_dim // num_heads
self.head_dim = head_dim
# NOTE scale factor was wrong in my original version, can set manually to be compat with prev weights
self.scale = qk_scale or head_dim ** -0.5
self.qk = nn.Linear(dim, hidden_dim * 2, bias=qkv_bias)
self.v = nn.Linear(dim, dim, bias=qkv_bias)
self.attn_drop = nn.Dropout(attn_drop, inplace=True)
self.proj = nn.Linear(dim, dim)
self.proj_drop = nn.Dropout(proj_drop, inplace=True)
def forward(self, x):
B, N, C = x.shape
qk = self.qk(x).reshape(B, N, 2, self.num_heads, self.head_dim).permute(2, 0, 3, 1, 4)
q, k = qk[0], qk[1] # make torchscript happy (cannot use tensor as tuple)
v = self.v(x).reshape(B, N, self.num_heads, -1).permute(0, 2, 1, 3)
attn = (q @ k.transpose(-2, -1)) * self.scale
attn = attn.softmax(dim=-1)
attn = self.attn_drop(attn)
x = (attn @ v).transpose(1, 2).reshape(B, N, -1)
x = self.proj(x)
x = self.proj_drop(x)
return x
class Block(nn.Module):
""" TNT Block
"""
def __init__(self, outer_dim, inner_dim, outer_num_heads, inner_num_heads, num_words, mlp_ratio=4.,
qkv_bias=False, qk_scale=None, drop=0., attn_drop=0., drop_path=0., act_layer=nn.GELU,
norm_layer=nn.LayerNorm, se=0):
super().__init__()
self.has_inner = inner_dim > 0
if self.has_inner:
# Inner
self.inner_norm1 = norm_layer(inner_dim)
self.inner_attn = Attention(
inner_dim, inner_dim, num_heads=inner_num_heads, qkv_bias=qkv_bias,
qk_scale=qk_scale, attn_drop=attn_drop, proj_drop=drop)
self.inner_norm2 = norm_layer(inner_dim)
self.inner_mlp = Mlp(in_features=inner_dim, hidden_features=int(inner_dim * mlp_ratio),
out_features=inner_dim, act_layer=act_layer, drop=drop)
self.proj_norm1 = norm_layer(num_words * inner_dim)
self.proj = nn.Linear(num_words * inner_dim, outer_dim, bias=False)
self.proj_norm2 = norm_layer(outer_dim)
# Outer
self.outer_norm1 = norm_layer(outer_dim)
self.outer_attn = Attention(
outer_dim, outer_dim, num_heads=outer_num_heads, qkv_bias=qkv_bias,
qk_scale=qk_scale, attn_drop=attn_drop, proj_drop=drop)
self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity()
self.outer_norm2 = norm_layer(outer_dim)
self.outer_mlp = Mlp(in_features=outer_dim, hidden_features=int(outer_dim * mlp_ratio),
out_features=outer_dim, act_layer=act_layer, drop=drop)
# SE
self.se = se
self.se_layer = None
if self.se > 0:
self.se_layer = SE(outer_dim, 0.25)
def forward(self, inner_tokens, outer_tokens):
if self.has_inner:
print(inner_tokens.shape)
inner_tokens = inner_tokens + self.drop_path(self.inner_attn(self.inner_norm1(inner_tokens))) # B*N, k*k, c
print(inner_tokens.shape)
inner_tokens = inner_tokens + self.drop_path(self.inner_mlp(self.inner_norm2(inner_tokens))) # B*N, k*k, c
print(inner_tokens.shape)
B, N, C = outer_tokens.size()
print(inner_tokens.reshape(B, N - 1, -1).shape)
outer_tokens[:, 1:] = outer_tokens[:, 1:] + self.proj_norm2(
self.proj(self.proj_norm1(inner_tokens.reshape(B, N - 1, -1)))) # B, N, C
if self.se > 0:
outer_tokens = outer_tokens + self.drop_path(self.outer_attn(self.outer_norm1(outer_tokens)))
tmp_ = self.outer_mlp(self.outer_norm2(outer_tokens))
outer_tokens = outer_tokens + self.drop_path(tmp_ + self.se_layer(tmp_))
else:
outer_tokens = outer_tokens + self.drop_path(self.outer_attn(self.outer_norm1(outer_tokens)))
outer_tokens = outer_tokens + self.drop_path(self.outer_mlp(self.outer_norm2(outer_tokens)))
return inner_tokens, outer_tokens
class PatchEmbed(nn.Module):
""" Image to Visual Word Embedding
"""
def __init__(self, img_size=224, patch_size=16, in_chans=3, outer_dim=768, inner_dim=24, inner_stride=4):
super().__init__()
img_size = to_2tuple(img_size)
patch_size = to_2tuple(patch_size)
num_patches = (img_size[1] // patch_size[1]) * (img_size[0] // patch_size[0])
self.img_size = img_size
self.patch_size = patch_size
self.num_patches = num_patches
self.inner_dim = inner_dim
self.num_words = math.ceil(patch_size[0] / inner_stride) * math.ceil(patch_size[1] / inner_stride)
self.unfold = nn.Unfold(kernel_size=patch_size, stride=patch_size)
self.proj = nn.Conv2d(in_chans, inner_dim, kernel_size=7, padding=3, stride=inner_stride)
def forward(self, x):
B, C, H, W = x.shape
# FIXME look at relaxing size constraints
assert H == self.img_size[0] and W == self.img_size[1],
f"Input image size ({H}*{W}) doesn't match model ({self.img_size[0]}*{self.img_size[1]})."
print(x.shape)
x = self.unfold(x) # B, Ck2, N
print(x.shape)
x = x.transpose(1, 2).reshape(B * self.num_patches, C, *self.patch_size) # B*N, C, 16, 16
print(x.shape)
x = self.proj(x) # B*N, C, 8, 8
print(x.shape)
x = x.reshape(B * self.num_patches, self.inner_dim, -1).transpose(1, 2) # B*N, 8*8, C
print(x.shape)
return x
class TNT(nn.Module):
""" TNT (Transformer in Transformer) for computer vision
"""
def __init__(self, img_size=224, patch_size=16, in_chans=3, num_classes=1000, outer_dim=768, inner_dim=48,
depth=12, outer_num_heads=12, inner_num_heads=4, mlp_ratio=4., qkv_bias=False, qk_scale=None,
drop_rate=0., attn_drop_rate=0., drop_path_rate=0., norm_layer=nn.LayerNorm, inner_stride=4, se=0):
super().__init__()
self.num_classes = num_classes
self.num_features = self.outer_dim = outer_dim # num_features for consistency with other models
self.patch_embed = PatchEmbed(
img_size=img_size, patch_size=patch_size, in_chans=in_chans, outer_dim=outer_dim,
inner_dim=inner_dim, inner_stride=inner_stride)
self.num_patches = num_patches = self.patch_embed.num_patches
num_words = self.patch_embed.num_words
self.proj_norm1 = norm_layer(num_words * inner_dim)
self.proj = nn.Linear(num_words * inner_dim, outer_dim)
self.proj_norm2 = norm_layer(outer_dim)
self.cls_token = nn.Parameter(torch.zeros(1, 1, outer_dim))
self.outer_tokens = nn.Parameter(torch.zeros(1, num_patches, outer_dim), requires_grad=False)
self.outer_pos = nn.Parameter(torch.zeros(1, num_patches + 1, outer_dim))
self.inner_pos = nn.Parameter(torch.zeros(1, num_words, inner_dim))
self.pos_drop = nn.Dropout(p=drop_rate)
dpr = [x.item() for x in torch.linspace(0, drop_path_rate, depth)] # stochastic depth decay rule
vanilla_idxs = []
blocks = []
for i in range(depth):
if i in vanilla_idxs:
blocks.append(Block(
outer_dim=outer_dim, inner_dim=-1, outer_num_heads=outer_num_heads, inner_num_heads=inner_num_heads,
num_words=num_words, mlp_ratio=mlp_ratio, qkv_bias=qkv_bias, qk_scale=qk_scale, drop=drop_rate,
attn_drop=attn_drop_rate, drop_path=dpr[i], norm_layer=norm_layer, se=se))
else:
blocks.append(Block(
outer_dim=outer_dim, inner_dim=inner_dim, outer_num_heads=outer_num_heads,
inner_num_heads=inner_num_heads,
num_words=num_words, mlp_ratio=mlp_ratio, qkv_bias=qkv_bias, qk_scale=qk_scale, drop=drop_rate,
attn_drop=attn_drop_rate, drop_path=dpr[i], norm_layer=norm_layer, se=se))
self.blocks = nn.ModuleList(blocks)
self.norm = norm_layer(outer_dim)
# NOTE as per official impl, we could have a pre-logits representation dense layer + tanh here
# self.repr = nn.Linear(outer_dim, representation_size)
# self.repr_act = nn.Tanh()
# Classifier head
self.head = nn.Linear(outer_dim, num_classes) if num_classes > 0 else nn.Identity()
trunc_normal_(self.cls_token, std=.02)
trunc_normal_(self.outer_pos, std=.02)
trunc_normal_(self.inner_pos, std=.02)
self.apply(self._init_weights)
def _init_weights(self, m):
if isinstance(m, nn.Linear):
trunc_normal_(m.weight, std=.02)
if isinstance(m, nn.Linear) and m.bias is not None:
nn.init.constant_(m.bias, 0)
elif isinstance(m, nn.LayerNorm):
nn.init.constant_(m.bias, 0)
nn.init.constant_(m.weight, 1.0)
@torch.jit.ignore
def no_weight_decay(self):
return {'outer_pos', 'inner_pos', 'cls_token'}
def get_classifier(self):
return self.head
def reset_classifier(self, num_classes, global_pool=''):
self.num_classes = num_classes
self.head = nn.Linear(self.outer_dim, num_classes) if num_classes > 0 else nn.Identity()
def forward_features(self, x):
B = x.shape[0]
inner_tokens = self.patch_embed(x) + self.inner_pos # B*N, 8*8, C
outer_tokens = self.proj_norm2(self.proj(self.proj_norm1(inner_tokens.reshape(B, self.num_patches, -1))))
outer_tokens = torch.cat((self.cls_token.expand(B, -1, -1), outer_tokens), dim=1)
outer_tokens = outer_tokens + self.outer_pos
outer_tokens = self.pos_drop(outer_tokens)
for blk in self.blocks:
inner_tokens, outer_tokens = blk(inner_tokens, outer_tokens)
outer_tokens = self.norm(outer_tokens)
return outer_tokens[:, 0]
def forward(self, x):
x = self.forward_features(x)
x = self.head(x)
return x
def _conv_filter(state_dict, patch_size=16):
""" convert patch embedding weight from manual patchify + linear proj to conv"""
out_dict = {}
for k, v in state_dict.items():
if 'patch_embed.proj.weight' in k:
v = v.reshape((v.shape[0], 3, patch_size, patch_size))
out_dict[k] = v
return out_dict
@register_model
def tnt_s_patch16_224(pretrained=False, **kwargs):
patch_size = 16
inner_stride = 4
outer_dim = 384
inner_dim = 24
outer_num_heads = 6
inner_num_heads = 4
outer_dim = make_divisible(outer_dim, outer_num_heads)
inner_dim = make_divisible(inner_dim, inner_num_heads)
model = TNT(img_size=224, patch_size=patch_size, outer_dim=outer_dim, inner_dim=inner_dim, depth=12,
outer_num_heads=outer_num_heads, inner_num_heads=inner_num_heads, qkv_bias=False,
inner_stride=inner_stride, **kwargs)
model.default_cfg = default_cfgs['tnt_s_patch16_224']
if pretrained:
load_pretrained(
model, num_classes=model.num_classes, in_chans=kwargs.get('in_chans', 3), filter_fn=_conv_filter)
return model
@register_model
def tnt_b_patch16_224(pretrained=False, **kwargs):
patch_size = 16
inner_stride = 4
outer_dim = 640
inner_dim = 40
outer_num_heads = 10
inner_num_heads = 4
outer_dim = make_divisible(outer_dim, outer_num_heads)
inner_dim = make_divisible(inner_dim, inner_num_heads)
model = TNT(img_size=224, patch_size=patch_size, outer_dim=outer_dim, inner_dim=inner_dim, depth=12,
outer_num_heads=outer_num_heads, inner_num_heads=inner_num_heads, qkv_bias=False,
inner_stride=inner_stride, **kwargs)
model.default_cfg = default_cfgs['tnt_b_patch16_224']
if pretrained:
load_pretrained(
model, num_classes=model.num_classes, in_chans=kwargs.get('in_chans', 3), filter_fn=_conv_filter)
return model
if __name__ == '__main__':
model = tnt_b_patch16_224(pretrained=False)
input = torch.randn((1,3,224,224))
output = model(input)
print(output.shape)
最后
以上就是成就万宝路为你收集整理的Transformer主干网络——TNT保姆级解析前言系列文章动机网络分析完整测试代码的全部内容,希望文章能够帮你解决Transformer主干网络——TNT保姆级解析前言系列文章动机网络分析完整测试代码所遇到的程序开发问题。
如果觉得靠谱客网站的内容还不错,欢迎将靠谱客网站推荐给程序员好友。
发表评论 取消回复