概述
1、快速排序算法实现方式
快速排序的核心思想是分治法,分而治之。它的实现方式是每次从序列中选出一个基准值,其他数依次和基准值做比较,比基准值大的放右边,比基准值小的放左边,然后再对左边和右边的两组数分别选出一个基准值,进行同样的比较移动,重复步骤,直到最后都变成单个元素,整个数组就成了有序的序列。
简单概括如下:
-
从数列中挑出一个元素,称为 “基准”(pivot);
-
重新排序数列,所有元素比基准值小的摆放在基准前面,所有元素比基准值大的摆在基准的后面(相同的数可以到任一边)。在这个分区退出之后,该基准就处于数列的中间位置。这个称为分区(partition)操作;
-
递归地(recursive)把小于基准值元素的子数列和大于基准值元素的子数列排序;
2、快速排序算法动画演示
3、图解快速排序算法
我们以[ 8,2,5,0,7,4,6,1 ]这组数字为例来进行演示
首先,我们随机选择一个基准值:
与其他元素依次比较,大的放右边,小的放左边:
然后我们以同样的方式排左边的数据:
继续排 0 和 1 :
由于只剩下一个数,所以就不用排了,现在的数组序列是下图这个样子:
右边以同样的操作进行,即可排序完成。
4、快速排序算法Java代码实现
1//Java 代码实现
2public class QuickSort implements IArraySort {
3
4 @Override
5 public int[] sort(int[] sourceArray) throws Exception {
6 // 对 arr 进行拷贝,不改变参数内容
7 int[] arr = Arrays.copyOf(sourceArray, sourceArray.length);
8
9 return quickSort(arr, 0, arr.length - 1);
10 }
11
12 private int[] quickSort(int[] arr, int left, int right) {
13 if (left < right) {
14 int partitionIndex = partition(arr, left, right);
15 quickSort(arr, left, partitionIndex - 1);
16 quickSort(arr, partitionIndex + 1, right);
17 }
18 return arr;
19 }
20
21 private int partition(int[] arr, int left, int right) {
22 // 设定基准值(pivot)
23 int pivot = left;
24 int index = pivot + 1;
25 for (int i = index; i <= right; i++) {
26 if (arr[i] < arr[pivot]) {
27 swap(arr, i, index);
28 index++;
29 }
30 }
31 swap(arr, pivot, index - 1);
32 return index - 1;
33 }
34
35 private void swap(int[] arr, int i, int j) {
36 int temp = arr[i];
37 arr[i] = arr[j];
38 arr[j] = temp;
39 }
40
41}
5、单边扫描
快速排序的关键之处在于切分,切分的同时要进行比较和移动,这里介绍一种叫做单边扫描的做法。
我们随意抽取一个数作为基准值,同时设定一个标记 mark 代表左边序列最右侧的下标位置,当然初始为 0 ,接下来遍历数组,如果元素大于基准值,无操作,继续遍历,如果元素小于基准值,则把 mark + 1 ,再将 mark 所在位置的元素和遍历到的元素交换位置,mark 这个位置存储的是比基准值小的数据,当遍历结束后,将基准值与 mark 所在元素交换位置即可。
代码实现:
public static void sort(int[] arr) {
sort(arr, 0, arr.length - 1);
}
private static void sort(int[] arr, int startIndex, int endIndex) {
if (endIndex <= startIndex) {
return;
}
//切分
int pivotIndex = partitionV2(arr, startIndex, endIndex);
sort(arr, startIndex, pivotIndex-1);
sort(arr, pivotIndex+1, endIndex);
}
private static int partition(int[] arr, int startIndex, int endIndex) {
int pivot = arr[startIndex];//取基准值
int mark = startIndex;//Mark初始化为起始下标
for(int i=startIndex+1; i<=endIndex; i++){
if(arr[i]<pivot){
//小于基准值 则mark+1,并交换位置。
mark ++;
int p = arr[mark];
arr[mark] = arr[i];
arr[i] = p;
}
}
//基准值与mark对应元素调换位置
arr[startIndex] = arr[mark];
arr[mark] = pivot;
return mark;
}
6、双边扫描
另外还有一种双边扫描的做法,看起来比较直观:我们随意抽取一个数作为基准值,然后从数组左右两边进行扫描,先从左往右找到一个大于基准值的元素,将下标指针记录下来,然后转到从右往左扫描,找到一个小于基准值的元素,交换这两个元素的位置,重复步骤,直到左右两个指针相遇,再将基准值与左侧最右边的元素交换。
我们来看一下实现代码,不同之处只有 partition 方法:
public static void sort(int[] arr) {
sort(arr, 0, arr.length - 1);
}
private static void sort(int[] arr, int startIndex, int endIndex) {
if (endIndex <= startIndex) {
return;
}
//切分
int pivotIndex = partition(arr, startIndex, endIndex);
sort(arr, startIndex, pivotIndex-1);
sort(arr, pivotIndex+1, endIndex);
}
private static int partition(int[] arr, int startIndex, int endIndex) {
int left = startIndex;
int right = endIndex;
int pivot = arr[startIndex];//取第一个元素为基准值
while (true) {
//从左往右扫描
while (arr[left] <= pivot) {
left++;
if (left == right) {
break;
}
}
//从右往左扫描
while (pivot < arr[right]) {
right--;
if (left == right) {
break;
}
}
//左右指针相遇
if (left >= right) {
break;
}
//交换左右数据
int temp = arr[left];
arr[left] = arr[right];
arr[right] = temp;
}
//将基准值插入序列
int temp = arr[startIndex];
arr[startIndex] = arr[right];
arr[right] = temp;
return right;
}
7、极端情况
快速排序的时间复杂度和归并排序一样,O(n log n),但这是建立在每次切分都能把数组一刀切两半差不多大的前提下,如果出现极端情况,比如排一个有序的序列,如[ 9,8,7,6,5,4,3,2,1 ],选取基准值 9 ,那么需要切分 n - 1 次才能完成整个快速排序的过程,这种情况下,时间复杂度就退化成了 O(n2),当然极端情况出现的概率也是比较低的。
所以说,快速排序的时间复杂度是 O(nlogn),极端情况下会退化成 O(n2),为了避免极端情况的发生,选取基准值应该做到随机选取,或者是打乱一下数组再选取。
另外,快速排序的空间复杂度为 O(1)。
我有一个微信公众号,经常会分享一些Java技术相关的干货;
如果你喜欢我的分享,可以用微信搜索“Java团长”或者“javatuanzhang”关注。
最后
以上就是大胆抽屉为你收集整理的快速排序算法动图演示及解析2021版(附Java代码实现)1、快速排序算法实现方式2、快速排序算法动画演示3、图解快速排序算法4、快速排序算法Java代码实现5、单边扫描6、双边扫描7、极端情况的全部内容,希望文章能够帮你解决快速排序算法动图演示及解析2021版(附Java代码实现)1、快速排序算法实现方式2、快速排序算法动画演示3、图解快速排序算法4、快速排序算法Java代码实现5、单边扫描6、双边扫描7、极端情况所遇到的程序开发问题。
如果觉得靠谱客网站的内容还不错,欢迎将靠谱客网站推荐给程序员好友。
发表评论 取消回复