概述
文章目录
- 算法
- 代码1-递归
- 代码2-非递归
参考的文章:
(1)这或许是东半球讲十大排序算法最好的一篇文章
(2)排序算法 - 面试中的排序算法总结
(3)必学十大经典排序算法,看这篇就够了
算法
(1)归并排序的核心思想是分治,分而治之,将一个大问题分解成无数的小问题进行处理,处理之后再合并,这里我们采用递归来实现;
(2)时间复杂度O(nlogn)
代码1-递归
/**
* 正确的递归写法
*
* @param arr
* @param left
* @param right
* @return
*/
public int[] mergeSort2(int[] arr, int left, int right) {
// 如果 left == right,表示数组只有一个元素,则不用递归排序
if (left < right) {
// 把大的数组分隔成两个数组
int mid = (left + right) / 2;
// 对左半部分进行排序
arr = mergeSort2(arr, left, mid);
// 对右半部分进行排序
arr = mergeSort2(arr, mid + 1, right);
//进行合并
merge2(arr, left, mid, right);
}
return arr;
}
// 合并函数,把两个有序的数组合并起来
// arr[left..mif]表示一个数组,arr[mid+1 .. right]表示一个数组
private void merge2(int[] arr, int left, int mid, int right) {
//先用一个临时数组把他们合并汇总起来
int[] a = new int[right - left + 1];
int i = left;
int j = mid + 1;
int k = 0;
while (i <= mid && j <= right) {
if (arr[i] < arr[j]) {
a[k++] = arr[i++];
} else {
a[k++] = arr[j++];
}
}
while(i <= mid) a[k++] = arr[i++];
while(j <= right) a[k++] = arr[j++];
// 把临时数组复制到原数组
for (i = 0; i < k; i++) {
arr[left++] = a[i];
}
}
代码2-非递归
/**
* 非递归写法
*
* @param arr
* @return
*/
public static int[] mergeSort3(int[] arr) {
int n = arr.length;
// 子数组的大小分别为1,2,4,8...
// 刚开始合并的数组大小是1,接着是2,接着4....
for (int i = 1; i < n; i += i) {
//进行数组进行划分
int left = 0;
int mid = left + i - 1;
int right = mid + i;
//进行合并,对数组大小为 i 的数组进行两两合并
while (right < n) {
// 合并函数和递归式的合并函数一样
merge3(arr, left, mid, right);
left = right + 1;
mid = left + i - 1;
right = mid + i;
}
// 还有一些被遗漏的数组没合并,千万别忘了
// 因为不可能每个字数组的大小都刚好为 i
if (left < n && mid < n) {
merge3(arr, left, mid, n - 1);
}
}
return arr;
}
private void merge3(int[] arr, int left, int mid, int right) {
//先用一个临时数组把他们合并汇总起来
int[] a = new int[right - left + 1];
int i = left;
int j = mid + 1;
int k = 0;
while (i <= mid && j <= right) {
if (arr[i] < arr[j]) {
a[k++] = arr[i++];
} else {
a[k++] = arr[j++];
}
}
while(i <= mid) a[k++] = arr[i++];
while(j <= right) a[k++] = arr[j++];
// 把临时数组复制到原数组
for (i = 0; i < k; i++) {
arr[left++] = a[i];
}
}
最后
以上就是爱笑老师为你收集整理的十大经典排序算法——归并排序(Merge Sort)算法代码1-递归代码2-非递归的全部内容,希望文章能够帮你解决十大经典排序算法——归并排序(Merge Sort)算法代码1-递归代码2-非递归所遇到的程序开发问题。
如果觉得靠谱客网站的内容还不错,欢迎将靠谱客网站推荐给程序员好友。
本图文内容来源于网友提供,作为学习参考使用,或来自网络收集整理,版权属于原作者所有。
发表评论 取消回复