概述
目前三维位姿表示方式主要有旋转矩阵、欧拉角、轴角、四元数等,Eigen库中提供了四元数、欧拉角、旋转矩阵的转换方法:
Eigen旋转的表示方式与相互转换
#include <iostream>
#include <Eigen/Core>
#include <Eigen/Geometry>
using namespace std;
#define PI (3.1415926535897932346f)
int main(int argc, char **argv)
{
/**** 1. 旋转向量 ****/
cout << endl << "********** AngleAxis **********" << endl;
//1.0 初始化旋转向量,沿Z轴旋转45度的旋转向量
Eigen::AngleAxisd rotation_vector1 (M_PI/4, Eigen::Vector3d(0, 0, 1));
//1.1 旋转向量转换为旋转矩阵
//旋转向量用matrix()转换成旋转矩阵
Eigen::Matrix3d rotation_matrix1 = Eigen::Matrix3d::Identity();
rotation_matrix1 = rotation_vector1.matrix();
cout << "rotation matrix1 =n" << rotation_matrix1 << endl;
//或者由罗德里格公式进行转换
rotation_matrix1 = rotation_vector1.toRotationMatrix();
cout << "rotation matrix1 =n" << rotation_matrix1 << endl;
/*1.2 旋转向量转换为欧拉角*/
//将旋转向量转换为旋转矩阵,再由旋转矩阵转换为欧拉角,详见旋转矩阵转换为欧拉角
Eigen::Vector3d eulerAngle1 = rotation_vector1.matrix().eulerAngles(2,1,0);
cout << "eulerAngle1, z y x: " << eulerAngle1 << endl;
/*1.3 旋转向量转四元数*/
Eigen::Quaterniond quaternion1(rotation_vector1);
//或者
Eigen::Quaterniond quaternion1_1;
quaternion1_1 = rotation_vector1;
cout << "quaternion1 x: " << quaternion1.x() << endl;
cout << "quaternion1 y: " << quaternion1.y() << endl;
cout << "quaternion1 z: " << quaternion1.z() << endl;
cout << "quaternion1 w: " << quaternion1.w() << endl;
cout << "quaternion1_1 x: " << quaternion1_1.x() << endl;
cout << "quaternion1_1 y: " << quaternion1_1.y() << endl;
cout << "quaternion1_1 z: " << quaternion1_1.z() << endl;
cout << "quaternion1_1 w: " << quaternion1_1.w() << endl;
/**** 2. 旋转矩阵 *****/
cout << endl << "********** RotationMatrix **********" << endl;
//2.0 旋转矩阵初始化
Eigen::Matrix3d rotation_matrix2;
rotation_matrix2 << 0.707107, -0.707107, 0, 0.707107, 0.707107, 0, 0, 0, 1;
;
//或直接单位矩阵初始化
Eigen::Matrix3d rotation_matrix2_1 = Eigen::Matrix3d::Identity();
//2.1 旋转矩阵转换为欧拉角
//ZYX顺序,即先绕x轴roll,再绕y轴pitch,最后绕z轴yaw,0表示X轴,1表示Y轴,2表示Z轴
Eigen::Vector3d euler_angles = rotation_matrix2.eulerAngles(2, 1, 0);
cout << "yaw(z) pitch(y) roll(x) = " << euler_angles.transpose() << endl;
//2.2 旋转矩阵转换为旋转向量
Eigen::AngleAxisd rotation_vector2;
rotation_vector2.fromRotationMatrix(rotation_matrix2);
//或者
Eigen::AngleAxisd rotation_vector2_1(rotation_matrix2);
cout << "rotation_vector2 " << "angle is: " << rotation_vector2.angle() * (180 / M_PI)
<< " axis is: " << rotation_vector2.axis().transpose() << endl;
cout << "rotation_vector2_1 " << "angle is: " << rotation_vector2_1.angle() * (180 / M_PI)
<< " axis is: " << rotation_vector2_1.axis().transpose() << endl;
//2.3 旋转矩阵转换为四元数
Eigen::Quaterniond quaternion2(rotation_matrix2);
//或者
Eigen::Quaterniond quaternion2_1;
quaternion2_1 = rotation_matrix2;
cout << "quaternion2 x: " << quaternion2.x() << endl;
cout << "quaternion2 y: " << quaternion2.y() << endl;
cout << "quaternion2 z: " << quaternion2.z() << endl;
cout << "quaternion2 w: " << quaternion2.w() << endl;
cout << "quaternion2_1 x: " << quaternion2_1.x() << endl;
cout << "quaternion2_1 y: " << quaternion2_1.y() << endl;
cout << "quaternion2_1 z: " << quaternion2_1.z() << endl;
cout << "quaternion2_1 w: " << quaternion2_1.w() << endl;
/**** 3. 欧拉角 ****/
cout << endl << "********** EulerAngle **********" << endl;
//3.0 初始化欧拉角(Z-Y-X,即RPY, 先绕x轴roll,再绕y轴pitch,最后绕z轴yaw)
Eigen::Vector3d ea(0.785398, -0, 0);
//3.1 欧拉角转换为旋转矩阵
Eigen::Matrix3d rotation_matrix3;
rotation_matrix3 = Eigen::AngleAxisd(ea[0], Eigen::Vector3d::UnitZ()) *
Eigen::AngleAxisd(ea[1], Eigen::Vector3d::UnitY()) *
Eigen::AngleAxisd(ea[2], Eigen::Vector3d::UnitX());
cout << "rotation matrix3 =n" << rotation_matrix3 << endl;
//3.2 欧拉角转换为四元数,
Eigen::Quaterniond quaternion3;
quaternion3 = Eigen::AngleAxisd(ea[0], Eigen::Vector3d::UnitZ()) *
Eigen::AngleAxisd(ea[1], Eigen::Vector3d::UnitY()) *
Eigen::AngleAxisd(ea[2], Eigen::Vector3d::UnitX());
cout << "quaternion3 x: " << quaternion3.x() << endl;
cout << "quaternion3 y: " << quaternion3.y() << endl;
cout << "quaternion3 z: " << quaternion3.z() << endl;
cout << "quaternion3 w: " << quaternion3.w() << endl;
//3.3 欧拉角转换为旋转向量
Eigen::AngleAxisd rotation_vector3;
rotation_vector3 = Eigen::AngleAxisd(ea[0], Eigen::Vector3d::UnitZ()) *
Eigen::AngleAxisd(ea[1], Eigen::Vector3d::UnitY()) *
Eigen::AngleAxisd(ea[2], Eigen::Vector3d::UnitX());
cout << "rotation_vector3 " << "angle is: " << rotation_vector3.angle() * (180 / M_PI)
<< " axis is: " << rotation_vector3.axis().transpose() << endl;
/**** 4.四元数 ****/
cout << endl << "********** Quaternion **********" << endl;
//4.0 初始化四元素,注意eigen Quaterniond类四元数初始化参数顺序为w,x,y,z
Eigen::Quaterniond quaternion4(0.92388, 0, 0, 0.382683);
//4.1 四元数转换为旋转向量
Eigen::AngleAxisd rotation_vector4(quaternion4);
//或者
Eigen::AngleAxisd rotation_vector4_1;
rotation_vector4_1 = quaternion4;
cout << "rotation_vector4 " << "angle is: " << rotation_vector4.angle() * (180 / M_PI)
<< " axis is: " << rotation_vector4.axis().transpose() << endl;
cout << "rotation_vector4_1 " << "angle is: " << rotation_vector4_1.angle() * (180 / M_PI)
<< " axis is: " << rotation_vector4_1.axis().transpose() << endl;
//4.2 四元数转换为旋转矩阵
Eigen::Matrix3d rotation_matrix4;
rotation_matrix4 = quaternion4.matrix();
Eigen::Matrix3d rotation_matrix4_1;
rotation_matrix4_1 = quaternion4.toRotationMatrix();
cout << "rotation matrix4 =n" << rotation_matrix4 << endl;
cout << "rotation matrix4_1 =n" << rotation_matrix4_1 << endl;
//4.4 四元数转欧拉角(Z-Y-X,即RPY)
Eigen::Vector3d eulerAngle4 = quaternion4.matrix().eulerAngles(2,1,0);
cout << "yaw(z) pitch(y) roll(x) = " << eulerAngle4.transpose() << endl;
return 0;
}
输出:
或
#include <iostream>
#include <Eigen/Eigen>
#include <stdlib.h>
#include <Eigen/Geometry>
#include <Eigen/Core>
#include <vector>
#include <math.h>
using namespace std;
using namespace Eigen;
Eigen::Quaterniond euler2Quaternion(const double roll, const double pitch, const double yaw)
{
Eigen::AngleAxisd rollAngle(roll, Eigen::Vector3d::UnitZ());
Eigen::AngleAxisd yawAngle(yaw, Eigen::Vector3d::UnitY());
Eigen::AngleAxisd pitchAngle(pitch, Eigen::Vector3d::UnitX());
Eigen::Quaterniond q = rollAngle * yawAngle * pitchAngle;
cout << "Euler2Quaternion result is:" <<endl;
cout << "x = " << q.x() <<endl;
cout << "y = " << q.y() <<endl;
cout << "z = " << q.z() <<endl;
cout << "w = " << q.w() <<endl<<endl;
return q;
}
Eigen::Vector3d Quaterniond2Euler(const double x,const double y,const double z,const double w)
{
Eigen::Quaterniond q;
q.x() = x;
q.y() = y;
q.z() = z;
q.w() = w;
Eigen::Vector3d euler = q.toRotationMatrix().eulerAngles(2, 1, 0);
cout << "Quaterniond2Euler result is:" <<endl;
cout << "z = "<< euler[2] << endl ;
cout << "y = "<< euler[1] << endl ;
cout << "x = "<< euler[0] << endl << endl;
}
Eigen::Matrix3d Quaternion2RotationMatrix(const double x,const double y,const double z,const double w)
{
Eigen::Quaterniond q;
q.x() = x;
q.y() = y;
q.z() = z;
q.w() = w;
Eigen::Matrix3d R = q.normalized().toRotationMatrix();
cout << "Quaternion2RotationMatrix result is:" <<endl;
cout << "R = " << endl << R << endl<< endl;
return R;
}
Eigen::Quaterniond rotationMatrix2Quaterniond(Eigen::Matrix3d R)
{
Eigen::Quaterniond q = Eigen::Quaterniond(R);
q.normalize();
cout << "RotationMatrix2Quaterniond result is:" <<endl;
cout << "x = " << q.x() <<endl;
cout << "y = " << q.y() <<endl;
cout << "z = " << q.z() <<endl;
cout << "w = " << q.w() <<endl<<endl;
return q;
}
Eigen::Matrix3d euler2RotationMatrix(const double roll, const double pitch, const double yaw)
{
Eigen::AngleAxisd rollAngle(roll, Eigen::Vector3d::UnitZ());
Eigen::AngleAxisd yawAngle(yaw, Eigen::Vector3d::UnitY());
Eigen::AngleAxisd pitchAngle(pitch, Eigen::Vector3d::UnitX());
Eigen::Quaterniond q = rollAngle * yawAngle * pitchAngle;
Eigen::Matrix3d R = q.matrix();
cout << "Euler2RotationMatrix result is:" <<endl;
cout << "R = " << endl << R << endl<<endl;
return R;
}
Eigen::Vector3d RotationMatrix2euler(Eigen::Matrix3d R)
{
Eigen::Matrix3d m;
m = R;
Eigen::Vector3d euler = m.eulerAngles(0, 1, 2);
cout << "RotationMatrix2euler result is:" << endl;
cout << "x = "<< euler[2] << endl ;
cout << "y = "<< euler[1] << endl ;
cout << "z = "<< euler[0] << endl << endl;
return euler;
}
int main(int argc, char **argv)
{
//example
Eigen::Vector3d x_axiz,y_axiz,z_axiz;
x_axiz << 1,0,0;
y_axiz << 0,1,0;
z_axiz << 0,0,1;
Eigen::Matrix3d R;
R << x_axiz,y_axiz,z_axiz;
rotationMatrix2Quaterniond(R);
euler2RotationMatrix(0,0,0);
RotationMatrix2euler(R);
}
关于“旋转矩阵、欧拉角、轴角、四元数”之间的联系与思考
内旋与外旋
更多参考:https://zhuanlan.zhihu.com/p/144032401
Eigen::eulerAngles(2,1,0) 注意
参考:https://blog.csdn.net/delovsam/article/details/104432185
普通的方法是,用Eigen,把四元数转成旋转矩阵,再从旋转矩阵转到欧拉角:
::Eigen::Quaterniond q(w, x, y, z);
::Eigen::Matrix3d rx = q.toRotationMatrix();
::Eigen::Vector3d ea = rx.eulerAngles(2,1,0);
但这个方法存在问题,即可能转出来的欧拉角,不是想要的,**因为因为同一个四元数,可以用2个欧拉角来表示,而这个方法得到的结果有可能是用转角大于2PI的方式表达的。**例如,四元数(0.00392036, -0.00511095, -0.613622, 0.789573)应当转为欧拉角(-1.32133, -0.00325971, 0.0124636),但用Eigen却被转成了(1.82026, -3.13833, -3.12913)。
由于无人车在近似平面上运动,因此yaw角可能取值±180°,roll和pitch变化很小才对。但是使用eulerAngles(2,1,0)时,出现roll,pitch达到正负180的现象,明显错误。如下图:
为了避免这个问题,有以下解决办法:
方法一
使用 Conversion between quaternions and Euler angles(https://en.wikipedia.org/wiki/Conversion_between_quaternions_and_Euler_angles) 中给出的一个算法(如下),这个算法可以保证出来的欧拉角不会超过2PI。
#define _USE_MATH_DEFINES
#include <cmath>
struct Quaternion {
double w, x, y, z;
};
struct EulerAngles {
double roll, pitch, yaw;
};
EulerAngles ToEulerAngles(Quaternion q) {
EulerAngles angles;
// roll (x-axis rotation)
double sinr_cosp = 2 * (q.w * q.x + q.y * q.z);
double cosr_cosp = 1 - 2 * (q.x * q.x + q.y * q.y);
angles.roll = std::atan2(sinr_cosp, cosr_cosp);
// pitch (y-axis rotation)
double sinp = 2 * (q.w * q.y - q.z * q.x);
if (std::abs(sinp) >= 1)
angles.pitch = std::copysign(M_PI / 2, sinp); // use 90 degrees if out of range
else
angles.pitch = std::asin(sinp);
// yaw (z-axis rotation)
double siny_cosp = 2 * (q.w * q.z + q.x * q.y);
double cosy_cosp = 1 - 2 * (q.y * q.y + q.z * q.z);
angles.yaw = std::atan2(siny_cosp, cosy_cosp);
return angles;
}
方法二:
使用pcl::getTranslationAndEulerAngles()。但有的文章测试认为该函数在计算绕Z轴的旋转角时存在精度损失:pcl::getTranslationAndEulerAngles精度缺失问题
但我觉得影响不大,同时LIO-Sam中也是用的这种方式。
#include <pcl/common/transforms.h>
#include <Eigen/Core>
float x, y, z, roll, pitch, yaw;
Eigen::Affine3f tmp(T_utm_lidar.cast<float>());
pcl::getTranslationAndEulerAngles(tmp, x, y, z, roll, pitch, yaw);
使用pcl::getTranslationAndEulerAngles()方法的效果如下:
方法三
可使用vio中R2ypr函数
Utility::R2ypr(q.toRotationMatrix())
输出的是:yaw pitch roll 的vector3d向量,单位是度数,(正负180)
Utility::R2ypr得到的yaw,pitch,roll均利用atan2函数故只能输出±180之间,(注意atan2不同atan,后者只能±90)
而.eulerAngles得到的是[0:pi] [-pi:pi] [-pi:pi],
函数定义:
static Eigen::Vector3d R2ypr(const Eigen::Matrix3d &R)
{
Eigen::Vector3d n = R.col(0);
Eigen::Vector3d o = R.col(1);
Eigen::Vector3d a = R.col(2);
Eigen::Vector3d ypr(3);
double y = atan2(n(1), n(0));
double p = atan2(-n(2), n(0) * cos(y) + n(1) * sin(y));
double r = atan2(a(0) * sin(y) - a(1) * cos(y), -o(0) * sin(y) + o(1) * cos(y));
ypr(0) = y;
ypr(1) = p;
ypr(2) = r;
return ypr / M_PI * 180.0;
}
感谢:
https://blog.csdn.net/u011906844/article/details/121863578
https://blog.csdn.net/hltt3838/article/details/110262089
http://t.zoukankan.com/long5683-p-14373627.html
…
最后
以上就是花痴指甲油为你收集整理的Eigen中三维位姿表示方式以及相互转换的全部内容,希望文章能够帮你解决Eigen中三维位姿表示方式以及相互转换所遇到的程序开发问题。
如果觉得靠谱客网站的内容还不错,欢迎将靠谱客网站推荐给程序员好友。
发表评论 取消回复