我是靠谱客的博主 痴情小懒虫,最近开发中收集的这篇文章主要介绍图像增强,觉得挺不错的,现在分享给大家,希望可以做个参考。

概述

发展

        20世纪20年代图片第一次通过海底电缆从伦敦传往纽约。当时人们通过字符模拟得到中间色调的方法来还原图像。早期的图像增强技术往往涉及硬件参数的设置,如打印过程的选择和亮度等级的分布等问题。在1921年年底提出了一种基于光学还原的新技术。在这一时期由于引入了一种用编码图像纸带去调制光束达到调节底片感光程度的方法,使灰度等级从5个灰度级增加到15个灰度等级,这种方法明显改善了图像复原的效果。到20世纪60年代早期第一台可以执行数字图像处理任务的大型计算机制造出来了,这标志着利用计算机技术处理数字图像时代的到来。1964年,研究人员在美国喷气推进实验室(JPL)里使用计算机以及其它硬件设备,采用几何校正、灰度变换、去噪声、傅里叶变换以及二维线性滤波等增强方法对航天探测器“徘徊者7号”发回的几千张月球照片进行处理,同时他们也考虑太阳位置和月球环境的影响,最终成功地绘制出了月球表面地图。随后他们又对1965年“徘徊者8号”发回地球的几万张照片进行了较为复杂的数字图像处理,使图像质量进一步提高。这些成绩不仅引起世界许多有关方面的注意而且JPL本身也更加重视对数字图像处理地研究和设备的改进,并专门成立了图像处理实验室IPL。在IPL里成功的对后来探测飞船发回的几十万张照片进行了更为复杂的图像处理,最终获得了月球的地形图、彩色图以及全景镶嵌图。从此数字图像增强技术走进了航空航天领域。
        20世纪60年代末和20世纪70年代初有学者开始将图像增强技术用于医学图像、地球遥感监测和天文学等领域。X射线是最早用于成像的电磁辐射源之一,在1895年X射线由伦琴发现。20世纪70年代Godfrey N. Hounsfield先生和Allan M. Cormack教授共同发明计算机轴向断层技术:一个检测器围绕病人,并用X射线源绕着物体旋转。X射线穿过身体并由位于对面环中的相应检测器收集起来。其原理是用感知的数据去重建切片图像。当物体沿垂直于检测器的方向运动时就产生一系列的切片,这些切片组成了物体内部的再现图像。到了20世纪80年代以后,各种硬件的发展使得人们不仅能够处理二维图像,而且开始处理三维图像。许多能获得三维图像的设备和分析处理三维图像的系统已经研制成功了,图像处理技术得到了广泛的应用。进入20世纪90年代,图像增强技术已经逐步涉及人类生活和社会发展的各个方面。计算机程序用于增强对比度或将亮度编码为彩色,以便解释X射线和用于工业、医学及生物科学等领域的其他图像。地理学用相同或相似的技术从航空和卫星图像中研究污染模式。在考古学领域中使用图像处理方法已成功地复原模糊图片。在物理学和相关领域中计算机技术能增强高能等离子和电子显微镜等领域的实验图片。直方图均衡处理是图像增强技术常用的方法之一。1997年Kim 提出如果要将图像增强技术运用到数码相机等电子产品中,那么算法一定要保持图像的亮度特性。在文章中Kim提出了保持亮度特性的直方图均衡算法(BBHE)。Kim的改进算法提出后,引起了许多学者的关注。在1999年Wan等人提出二维子图直方图均衡算法(DSIHE)。接着Chen和Ramli提出最小均方误差双直方图均衡算法(MMBEBHE)。为了保持图像亮度特性,许多学者转而研究局部增强处理技术,提出了许多新的算法:递归均值分层均衡处理(RMSHE)、递归子图均衡算法(RSIHE)、动态直方图均衡算法(DHE)、保持亮度特性动态直方图均衡算法(BPDHE)、多层直方图均衡算法(MHE)、亮度保持簇直方图均衡处理(BPWCHE)等等。

简介

        增强图像中的有用信息,它可以是一个失真的过程,其目的是要改善图像的视觉效果,针对给定图像的应用场合,有目的地强调图像的整体或局部特性,将原来不清晰的图像变得清晰或强调某些感兴趣的特征,扩大图像中不同物体特征之间的差别,抑制不感兴趣的特征,使之改善图像质量、丰富信息量,加强图像判读和识别效果,满足某些特殊分析的需要。
        图像增强可分成两大类:频率域法和空间域法。前者把图像看成一种二维信号,对其进行基于二维傅里叶变换的信号增强。采用低通滤波(即只让低频信号通过)法,可去掉图中的噪声;采用高通滤波法,则可增强边缘等高频信号,使模糊的图片变得清晰。具有代表性的空间域算法有局部求平均值法和中值滤波(取局部邻域中的中间像素值)法等,它们可用于去除或减弱噪声。
        图像增强的方法是通过一定手段对原图像附加一些信息或变换数据,有选择地突出图像中感兴趣的特征或者抑制(掩盖)图像中某些不需要的特征,使图像与视觉响应特性相匹配。在图像增强过程中,不分析图像降质的原因,处理后的图像不一定逼近原始图像。图像增强技术根据增强处理过程所在的空间不同,可分为基于空域的算法和基于频域的算法两大类。基于空域的算法处理时直接对图像灰度级做运算基于频域的算法是在图像的某种变换域内对图像的变换系数值进行某种修正,是一种间接增强的算法。
        基于空域的算法分为点运算算法和邻域去噪算法。点运算算法即灰度级校正、灰度变换和直方图修正等,目的或使图像成像均匀,或扩大图像动态范围,扩展对比度。邻域增强算法分为图像平滑和锐化两种。平滑一般用于消除图像噪声,但是也容易引起边缘的模糊。常用算法有均值滤波、中值滤波。锐化的目的在于突出物体的边缘轮廓,便于目标识别。常用算法有梯度法、算子、高通滤波、掩模匹配法、统计差值法等。
        影响图像质量清晰程度有很多因素,室外光照度不均匀会造成图像灰度过于集中;摄像头获得的图像经过数/模转换,线路传输时都会产生噪声污染,图像质量不可避免降低,轻者变现为图像伴有噪点,难于看清图像细节;重者图像模糊不清,连大概物体面貌轮廓都难以看清。因此,对图像进行分析处理之前,必须对图像进行改善,即增强图像。图像增强并不考虑图像质量下降的原因,只是将图像中感兴趣的重要特征有选择性的突出出来,同时衰减不需要的特征,目的就是提高图像的可懂度。
        图像增强的方法分为空域法和频域法两种,空域法是对图像中的像素点进行操作,用公式描述如下:
g(x,y)=f(x,y)*h(x,y),其中是f(x,y)原图像;h(x,y)为空间转换函数;g(x,y)表示进行处理后的图像。
        频域法是间接的处理方法,是先在图像的频域中对图像的变换值进行操作,然后变回空域。例如,先对图像进行傅里叶变化到频域,再对图像的频谱进行某种滤波修正,最后将修正后的图像进行傅里叶反变化到空域,以此增强图像。

图像增强的方法

# 平滑滤波。


# 中值滤波。


# 图像锐化。

# 直方图均衡。

最后

以上就是痴情小懒虫为你收集整理的图像增强的全部内容,希望文章能够帮你解决图像增强所遇到的程序开发问题。

如果觉得靠谱客网站的内容还不错,欢迎将靠谱客网站推荐给程序员好友。

本图文内容来源于网友提供,作为学习参考使用,或来自网络收集整理,版权属于原作者所有。
点赞(39)

评论列表共有 0 条评论

立即
投稿
返回
顶部