概述
参考《STM32中文参考手册_V10》,研究CubeMX中有关ADC的配置。
一、配置参数
ADC1 Mode and Configuration:
IN0~IN9:10路12位ADC采样通道,外部模拟量信号输入
Temperature Sensor Channel:MCU内置温度传感器采样通道,用来测量器件周围的温度。在MCU内部与ADC1_IN16通道相连
Vrefint Channel:内部参考电压检测通道,ADC 的参考电压都是通过 Vref+ 引脚提供的并作为ADC转换器的基准电压,当Vref+直接取自VDD电压时,易受VDD波动而影响,因此可以该通道对参考电压进行校准,以提升ADC计算精度。在MCU内部与ADC1_IN17通道相连
EXTI Conversion Trigger:外部触发转换。ADC转换可由外部事件触发,EXTSEL[2:0]和JEXTSEL[2:0]控制位允许应用程序选择8个可能的事件中的某一个,触发规则通道组合注入通道组的采样。这里若选择Disable,则可以在6个来自片上定时器的内部信号中选择一个作为触发源;若选择Injected Trigger/Regular Trigger/Injected and Regular Trigger,表示由外部引脚信号触发相应的通道组。
Parameter Settings:
- ADCs_Common_Settings
Mode:Independent mode
独立模式。此模式中,双ADC同步不工作,ADC1和ADC2相互独立工作。对应ADC控制寄存器1(ADC_CR1)中的DUALMOD[3:0]位。
- ADC_Settings
Data Alignment:Right alignment
数据右对齐。对应ADC控制寄存器2(ADC_CR2)中的ALIGN位。
Scan Conversion Mode:Enable
扫描模式使能。对应ADC控制寄存器1(ADC_CR1)中的SCAN位。
Continuous Conversion Mode:Disable
单次转换模式。对应ADC控制寄存器2(ADC_CR2)中的CONT位。
Discontinuous Conversion Mode:Disable
禁用间断模式,对应ADC控制寄存器1(ADC_CR1)中的DISCEN位。
- ADC_Regular_ConversionMode:规则通道组采样设置
Enable Regular Conversions:Enable
使能规则通道组转换。
Number of Conversion:3
规则通道组序列长度为3,即包含3个采样通道。
External Trigger Conversion Source:Timer 2 Capture 2 event
选择定时器2的CC2事件作为启动规则通道组的外部事件。
- Rank:ADC转换通道设置
- ADC_Injected_ConversionMode:注入通道组采样设置
- WatchDog:是否开启模拟看门狗
二、生成代码
void MX_ADC1_Init(void)
{
/* USER CODE BEGIN ADC1_Init 0 */
/* USER CODE END ADC1_Init 0 */
ADC_ChannelConfTypeDef sConfig = {0};
/* USER CODE BEGIN ADC1_Init 1 */
/* USER CODE END ADC1_Init 1 */
/** Common config
*/
hadc1.Instance = ADC1;
hadc1.Init.ScanConvMode = ADC_SCAN_ENABLE;
hadc1.Init.ContinuousConvMode = DISABLE;
hadc1.Init.DiscontinuousConvMode = DISABLE;
hadc1.Init.ExternalTrigConv = ADC_EXTERNALTRIGCONV_T2_CC2;
hadc1.Init.DataAlign = ADC_DATAALIGN_RIGHT;
hadc1.Init.NbrOfConversion = 3;
if (HAL_ADC_Init(&hadc1) != HAL_OK)
{
Error_Handler();
}
/** Configure Regular Channel
*/
sConfig.Channel = ADC_CHANNEL_0;
sConfig.Rank = ADC_REGULAR_RANK_1;
sConfig.SamplingTime = ADC_SAMPLETIME_7CYCLES_5;
if (HAL_ADC_ConfigChannel(&hadc1, &sConfig) != HAL_OK)
{
Error_Handler();
}
/** Configure Regular Channel
*/
sConfig.Channel = ADC_CHANNEL_1;
sConfig.Rank = ADC_REGULAR_RANK_2;
if (HAL_ADC_ConfigChannel(&hadc1, &sConfig) != HAL_OK)
{
Error_Handler();
}
/** Configure Regular Channel
*/
sConfig.Channel = ADC_CHANNEL_2;
sConfig.Rank = ADC_REGULAR_RANK_3;
if (HAL_ADC_ConfigChannel(&hadc1, &sConfig) != HAL_OK)
{
Error_Handler();
}
/* USER CODE BEGIN ADC1_Init 2 */
/* USER CODE END ADC1_Init 2 */
}
void HAL_ADC_MspInit(ADC_HandleTypeDef* adcHandle)
{
GPIO_InitTypeDef GPIO_InitStruct = {0};
if(adcHandle->Instance==ADC1)
{
/* USER CODE BEGIN ADC1_MspInit 0 */
/* USER CODE END ADC1_MspInit 0 */
/* ADC1 clock enable */
__HAL_RCC_ADC1_CLK_ENABLE();
__HAL_RCC_GPIOA_CLK_ENABLE();
/**ADC1 GPIO Configuration
PA0-WKUP ------> ADC1_IN0
PA1 ------> ADC1_IN1
PA2 ------> ADC1_IN2
*/
GPIO_InitStruct.Pin = GPIO_PIN_0|GPIO_PIN_1|GPIO_PIN_2;
GPIO_InitStruct.Mode = GPIO_MODE_ANALOG;
HAL_GPIO_Init(GPIOA, &GPIO_InitStruct);
/* ADC1 DMA Init */
/* ADC1 Init */
hdma_adc1.Instance = DMA1_Channel1;
hdma_adc1.Init.Direction = DMA_PERIPH_TO_MEMORY;
hdma_adc1.Init.PeriphInc = DMA_PINC_DISABLE;
hdma_adc1.Init.MemInc = DMA_MINC_ENABLE;
hdma_adc1.Init.PeriphDataAlignment = DMA_PDATAALIGN_HALFWORD;
hdma_adc1.Init.MemDataAlignment = DMA_MDATAALIGN_HALFWORD;
hdma_adc1.Init.Mode = DMA_CIRCULAR;
hdma_adc1.Init.Priority = DMA_PRIORITY_HIGH;
if (HAL_DMA_Init(&hdma_adc1) != HAL_OK)
{
Error_Handler();
}
__HAL_LINKDMA(adcHandle,DMA_Handle,hdma_adc1);
/* USER CODE BEGIN ADC1_MspInit 1 */
/* USER CODE END ADC1_MspInit 1 */
}
}
与标准库函数代码对比:
/* GPIO */
RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOA, ENABLE );
/*PA0-PA2ÈýÏàµçÁ÷²ÉÑù*/
GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AIN;
GPIO_InitStructure.GPIO_Pin = GPIO_Pin_0;//ADC0
GPIO_Init(GPIOA, &GPIO_InitStructure);
GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AIN;
GPIO_InitStructure.GPIO_Pin = GPIO_Pin_1;//ADC1
GPIO_Init(GPIOA, &GPIO_InitStructure);
GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AIN;
GPIO_InitStructure.GPIO_Pin = GPIO_Pin_2;//ADC2
GPIO_Init(GPIOA, &GPIO_InitStructure);
/* ADC */
RCC_APB2PeriphClockCmd(RCC_APB2Periph_ADC1, ENABLE);
ADC_DeInit(ADC1);
ADC_InitStructure.ADC_Mode = ADC_Mode_Independent;
ADC_InitStructure.ADC_ScanConvMode = ENABLE;
ADC_InitStructure.ADC_ContinuousConvMode = DISABLE;
ADC_InitStructure.ADC_ExternalTrigConv = ADC_ExternalTrigConv_T2_CC2;
ADC_InitStructure.ADC_DataAlign = ADC_DataAlign_Right;
ADC_InitStructure.ADC_NbrOfChannel = 3;
ADC_Init(ADC1, &ADC_InitStructure);
// ADC_TempSensorVrefintCmd(ENABLE);
RCC_ADCCLKConfig(RCC_PCLK2_Div6);
ADC_RegularChannelConfig(ADC1, ADC_Channel_0, 1, ADC_SampleTime_7Cycles5);
ADC_RegularChannelConfig(ADC1, ADC_Channel_1, 2, ADC_SampleTime_7Cycles5);
ADC_RegularChannelConfig(ADC1, ADC_Channel_2, 3, ADC_SampleTime_7Cycles5);
// ADC_RegularChannelConfig(ADC1, ADC_Channel_3, 4, ADC_SampleTime_7Cycles5);
// ADC_RegularChannelConfig(ADC1, ADC_Channel_4, 5, ADC_SampleTime_7Cycles5);
// ADC_RegularChannelConfig(ADC1, ADC_Channel_5, 6, ADC_SampleTime_7Cycles5);
// ADC_RegularChannelConfig(ADC1, ADC_Channel_6, 7, ADC_SampleTime_7Cycles5);
ADC_DMACmd(ADC1, ENABLE);
ADC_Cmd(ADC1, ENABLE);
/* ADC校准 */
ADC_ResetCalibration(ADC1);
while(ADC_GetResetCalibrationStatus(ADC1));
ADC_StartCalibration(ADC1);
while(ADC_GetCalibrationStatus(ADC1));
ADC_ExternalTrigConvCmd(ADC1, ENABLE);
三、小结
CubeMX中ADC的配置需要与GPIO的配置、DMA和TIM的配置(根据需求)相结合。
最后
以上就是明亮招牌为你收集整理的尝试使用CubeMX做stm32开发之十:ADC配置一、配置参数二、生成代码 三、小结的全部内容,希望文章能够帮你解决尝试使用CubeMX做stm32开发之十:ADC配置一、配置参数二、生成代码 三、小结所遇到的程序开发问题。
如果觉得靠谱客网站的内容还不错,欢迎将靠谱客网站推荐给程序员好友。
发表评论 取消回复