我是靠谱客的博主 体贴飞机,最近开发中收集的这篇文章主要介绍bandit agent下棋AI(python编写) 通过强化学习RL 使用numpy正文,觉得挺不错的,现在分享给大家,希望可以做个参考。

概述

PS:首先声明是学校的作业= = 我喊它贝塔狗(原谅我不要脸),因为一直觉得阿法狗很厉害但离我很遥远,终于第一次在作业驱动下尝试写了一个能看的AI,有不错的胜率还是挺开心的

正文

对战随机agent的胜率

对战100局,记录胜/负/平与AI思考总时间(第三个是井字棋)

笔者CPU:i5-12500h,12核

测试用例

[--size SIZE]  (boardsize) 棋盘大小
[--games GAMES]  (number of games) 玩多少盘
[--iterations ITERATIONS] (number of iterations allowed by the agent) 提高这个会提高算度,但下的更慢
[--print-board {all,final}] debug的时候用的
[--parallel PARALLEL] 线程,我的电脑其实可以12,老师给的是8,懒得改了= =

    python main.py --games 100 --size 5 --iterations 100 --parallel 8 shapes1.txt >> results.txt   # two in a row
    python main.py --games 100 --size 10 --iterations 100 --parallel 8 shapes1.txt >> results.txt  # two in a row large
    python main.py --games 100 --size 3 --iterations 1000 --parallel 8 shapes2.txt >> results.txt  # tic-tac-toe
    python main.py --games 100 --size 8 --iterations 1000 --parallel 8 shapes3.txt >> results.txt  # plus
    python main.py --games 100 --size 8 --iterations 1000 --parallel 8 shapes4.txt >> results.txt  # circle
    python main.py --games 100 --size 8 --iterations 100 --parallel 8 shapes4.txt >> results.txt   # circle fast
    python main.py --games 100 --size 10 --iterations 1000 --parallel 8 shapes5.txt >> results.txt # disjoint

思路/ pseudocode

1. Get every possible move

2. Simulate games for each possible move

3. Calculate the reward for each possible move

4. Return move choice for the real game

上代码

不能直接跑,重点是思路,不过我注释的很细节了

from random_agent import RandomAgent
from game import Game
import numpy as np
import copy
import random

class Agent:
    def __init__(self, iterations, id):
        self.iterations = iterations
        self.id = id

    def make_move(self, game):
        iter_cnt = 0
        rand = np.random.random()
        # parameters for each avaliable position
        freeposnum = len(game.board.free_positions())
        pos_winrate = np.zeros(freeposnum)
        pos_reward = np.zeros(freeposnum)
        pos_cnt = np.zeros(freeposnum)
        free_positions = game.board.free_positions()
        
        # simulation begin with creating a deep copy, which can change without affecting the others
        while iter_cnt < self.iterations:
            # create a deep copy
            board = copy.deepcopy(game.board)

            # dynamic epsilon, increased from 0(exploration) to 1(exploitation) by running time
            epsilon = iter_cnt / self.iterations
     
            # exploration & exploitation
            if rand > epsilon:                
                #pointer = game.board.random_free()
                pointer = random.randrange(0, len(free_positions))
            else: 
                pointer = np.argmax(pos_winrate)    

            # make the move in the deepcopy and deduce the game by using random agents
            finalmove = free_positions[pointer]
            board.place(finalmove, self.id)
            # attention here, it should be agent no.2 to take the next move
            deepcopy_players = [RandomAgent(2), RandomAgent(1)]
            deepcopy_game = game.from_board(board, game.objectives, deepcopy_players, game.print_board)
            if deepcopy_game.victory(finalmove, self.id):
                winner = self
            else:
                winner = deepcopy_game.play()

            # give rewards by outcomes
            if winner:
                if winner.id == 1:
                    pos_reward[pointer] += 1 
                else:
                    pos_reward[pointer] -= 1
            else:
                pos_reward[pointer] += 0

            # visit times + 1
            pos_cnt[pointer] += 1

            # calculate the winrate of each position
            pos_winrate[pointer] = pos_reward[pointer] / pos_cnt[pointer]

            # next iteration
            iter_cnt += 1
        
        # back to real match with a postion with the highest winrate
        highest_winrate_pos = np.argmax(pos_winrate)

        # take the shot
        finalmove = free_positions[highest_winrate_pos]
        return finalmove
        
    def __str__(self):
        return f'Player {self.id} (betago agent)'

PSS: 其实我也比较懒,没有把测试用例都截图po上来,但时间精力确实有限,比如现在还有别的作业没写完= =

只希望还是能帮到人吧(笑

最后

以上就是体贴飞机为你收集整理的bandit agent下棋AI(python编写) 通过强化学习RL 使用numpy正文的全部内容,希望文章能够帮你解决bandit agent下棋AI(python编写) 通过强化学习RL 使用numpy正文所遇到的程序开发问题。

如果觉得靠谱客网站的内容还不错,欢迎将靠谱客网站推荐给程序员好友。

本图文内容来源于网友提供,作为学习参考使用,或来自网络收集整理,版权属于原作者所有。
点赞(72)

评论列表共有 0 条评论

立即
投稿
返回
顶部