概述
在本文中我将展示如何将Jetson Nano开发板连接到Kubernetes集群以作为一个GPU节点。我将介绍使用GPU运行容器所需的NVIDIA docker设置,以及将Jetson连接到Kubernetes集群。在成功将节点连接到集群后,我还将展示如何在Jetson Nano上使用GPU运行简单的TensorFlow 2训练会话。
K3s还是K8s?
K3s是一个轻量级Kubernetes发行版,其大小不超过100MB。在我看来,它是单板计算机的理想选择,因为它所需的资源明显减少。你可以查看我们的往期文章,了解更多关于K3s的教程和生态。在K3s生态中,有一款不得不提的开源工具K3sup,这是由Alex Ellis开发的,用于简化K3s集群安装。你可以访问Github了解这款工具:
https://github.com/alexellis/k3sup
我们需要准备什么?
- 一个K3s集群——只需要一个正确配置的主节点即可
- NVIDIA Jetson Nano开发板,并安装好开发者套件
如果你想了解如何在开发板上安装开发者套件,你可以查看以下文档:
https://developer.nvidia.com/embedded/learn/get-started-jetson-nano-devkit#write
- K3sup
- 15分钟的时间
计划步骤
- 设置NVIDIA docker
- 添加Jetson Nano到K3s集群
- 运行一个简单的MNIST例子来展示Kubernetes pod内GPU的使用
设置NVIDIA docker
在我们配置Docker以使用nvidia-docker作为默认的运行时之前,我需要先解释一下为什么要这样做。默认情况下,当用户在Jetson Nano上运行容器时,运行方式与其他硬件设备相同,你不能从容器中访问GPU,至少在没有黑客攻击的情况下不能。如果你想自己测试一下,你可以运行以下命令,应该会看到类似的结果:
1. root@jetson:~# echo "python3 -c 'import tensorflow'" | docker run -i
icetekio/jetson-nano-tensorflow /bin/bash
2. 2020-05-14 00:10:23.370761: W
tensorflow/stream_executor/platform/default/dso_loader.cc:59] Could
not load dynamic library 'libcudart.so.10.2'; dlerror:
libcudart.so.10.2: cannot open shared object file: No such file or
directory; LD_LIBRARY_PATH:
/usr/local/cuda-10.2/targets/aarch64-linux/lib:
3. 2020-05-14 00:10:23.370859: I
tensorflow/stream_executor/cuda/cudart_stub.cc:29] Ignore above
cudart dlerror if you do not have a GPU set up on your machine.
4. 2020-05-14 00:10:25.946896: W
tensorflow/stream_executor/platform/default/dso_loader.cc:59] Could
not load dynamic library 'libnvinfer.so.7'; dlerror:
libnvinfer.so.7: cannot open shared object file: No such file or
directory; LD_LIBRARY_PATH:
/usr/local/cuda-10.2/targets/aarch64-linux/lib:
5. 2020-05-14 00:10:25.947219: W
tensorflow/stream_executor/platform/default/dso_loader.cc:59] Could
not load dynamic library 'libnvinfer_plugin.so.7'; dlerror:
libnvinfer_plugin.so.7: cannot open shared object file: No such file
or directory; LD_LIBRARY_PATH:
/usr/local/cuda-10.2/targets/aarch64-linux/lib:
6. 2020-05-14 00:10:25.947273: W
tensorflow/compiler/tf2tensorrt/utils/py_utils.cc:30] Cannot dlopen
some TensorRT libraries. If you would like to use Nvidia GPU with
TensorRT, please make sure the missing libraries mentioned above are
installed properly.
7. /usr/lib/python3/dist-packages/h5py/__init__.py:36: FutureWarning:
Conversion of the second argument of issubdtype from `float` to
`np.floating` is deprecated. In future, it will be treated as
`np.float64 == np.dtype(float).type`.
8. from ._conv import register_converters as _register_converters
如果你现在尝试运行相同的命令,但在docker命令中添**–runtime=nvidia**参数,你应该看到类似以下的内容:
1. root@jetson:~# echo "python3 -c 'import tensorflow'" | docker run
--runtime=nvidia -i icetekio/jetson-nano-tensorflow /bin/bash
2. 2020-05-14 00:12:16.767624: I
tensorflow/stream_executor/platform/default/dso_loader.cc:48]
Successfully opened dynamic library libcudart.so.10.2
3. 2020-05-14 00:12:19.386354: I
tensorflow/stream_executor/platform/default/dso_loader.cc:48]
Successfully opened dynamic library libnvinfer.so.7
4. 2020-05-14 00:12:19.388700: I
tensorflow/stream_executor/platform/default/dso_loader.cc:48]
Successfully opened dynamic library libnvinfer_plugin.so.7
5. /usr/lib/python3/dist-packages/h5py/__init__.py:36: FutureWarning:
Conversion of the second argument of issubdtype from `float` to
`np.floating` is deprecated. In future, it will be treated as
`np.float64 == np.dtype(float).type`.
6. from ._conv import register_converters as _register_converters
nvidia-docker已经配置完成,但是默认情况下并没有启用。要启用docker运行nvidia-docker运行时作为默认值,需要将**“default-runtime”:“nvidia”**添加到/etc/docker/daemon.json配置文件中,如下所示:
{
"runtimes": {
"nvidia": {
"path": "nvidia-container-runtime",
"runtimeArgs": []
}
},
"default-runtime": "nvidia"
}
现在你可以跳过docker run命令中**–runtime=nvidia**参数,GPU将被默认初始化。这样K3s就会用nvidia-docker运行时来使用Docker,让Pod不需要任何特殊配置就能使用GPU。
将Jetson作为K8S节点连接
使用K3sup将Jetson作为Kubernetes节点连接只需要1个命令,然而要想成功连接Jetson和master节点,我们需要能够在没有密码的情况下同时连接到Jetson和master节点,并且在没有密码的情况下做sudo,或者以root用户的身份连接。
如果你需要生成SSH 密钥并复制它们,你需要运行以下命令:
1. ssh-keygen -t rsa -b 4096 -f ~/.ssh/rpi -P ""
2. ssh-copy-id -i .ssh/rpi user@host
默认情况下,Ubuntu安装要求用户在使用sudo命令时输入密码,因此,更简单的方法是用root账户来使用K3sup。要使这个方法有效,需要将你的**~/.ssh/authorized_keys复制到/root/.ssh/**目录下。
在连接Jetson之前,我们查看一下想要连接到的集群:
1. upgrade@ZeroOne:~$ kubectl get node -o wide
2. NAME STATUS ROLES AGE VERSION INTERNAL-IP
EXTERNAL-IP OS-IMAGE KERNEL-VERSION
CONTAINER-RUNTIME
3. nexus Ready master 32d v1.17.2+k3s1 192.168.0.12
<none> Ubuntu 18.04.4 LTS 4.15.0-96-generic
containerd://1.3.3-k3s1
4. rpi3-32 Ready <none> 32d v1.17.2+k3s1 192.168.0.30
<none> Ubuntu 18.04.4 LTS 5.3.0-1022-raspi2
containerd://1.3.3-k3s1
5. rpi3-64 Ready <none> 32d v1.17.2+k3s1 192.168.0.32
<none> Ubuntu 18.04.4 LTS 5.3.0-1022-raspi2
containerd://1.3.3-k3s1
你可能会注意到,master节点是一台IP为192.168.0.12的nexus主机,它正在运行containerd。默认状态下,k3s会将containerd作为运行时,但这是可以修改的。由于我们设置了nvidia-docker与docker一起运行,我们需要修改containerd。无需担心,将containerd修改为Docker我们仅需传递一个额外的参数到k3sup命令即可。所以,运行以下命令即可连接Jetson到集群:
1. k3sup join --ssh-key ~/.ssh/rpi --server-ip 192.168.0.12 --ip
192.168.0.40 --k3s-extra-args '--docker'
IP 192.168.0.40是我的Jetson Nano。正如你所看到的,我们传递了**–k3s-extra-args’–docker’标志,在安装k3s agent 时,将–docker**标志传递给它。多亏如此,我们使用的是nvidia-docker设置的docker,而不是containerd。
要检查节点是否正确连接,我们可以运行kubectl get node -o wide:
1. upgrade@ZeroOne:~$ kubectl get node -o wide
2. NAME STATUS ROLES AGE VERSION INTERNAL-IP
EXTERNAL-IP OS-IMAGE KERNEL-VERSION
CONTAINER-RUNTIME
3. nexus Ready master 32d v1.17.2+k3s1 192.168.0.12
<none> Ubuntu 18.04.4 LTS 4.15.0-96-generic
containerd://1.3.3-k3s1
4. rpi3-32 Ready <none> 32d v1.17.2+k3s1 192.168.0.30
<none> Ubuntu 18.04.4 LTS 5.3.0-1022-raspi2
containerd://1.3.3-k3s1
5. rpi3-64 Ready <none> 32d v1.17.2+k3s1 192.168.0.32
<none> Ubuntu 18.04.4 LTS 5.3.0-1022-raspi2
containerd://1.3.3-k3s1
6. jetson Ready <none> 11s v1.17.2+k3s1 192.168.0.40
<none> Ubuntu 18.04.4 LTS 4.9.140-tegra
docker://19.3.6
简易验证
我们现在可以使用相同的docker镜像和命令来运行pod,以检查是否会有与本文开头在Jetson Nano上运行docker相同的结果。要做到这一点,我们可以应用这个pod规范:
1. apiVersion: v1
2. kind: Pod
3. metadata:
4. name: gpu-test
5. spec:
6. nodeSelector:
7. kubernetes.io/hostname: jetson
8. containers:
9. image: icetekio/jetson-nano-tensorflow
10. name: gpu-test
11. command:
-
12. "/bin/bash"
-
13. "-c"
-
14. "echo 'import tensorflow' | python3"
15. restartPolicy: Never
等待docker镜像拉取,然后通过运行以下命令查看日志:
1. upgrade@ZeroOne:~$ kubectl logs gpu-test
2. 2020-05-14 10:01:51.341661: I
tensorflow/stream_executor/platform/default/dso_loader.cc:48]
Successfully opened dynamic library libcudart.so.10.2
3. 2020-05-14 10:01:53.996300: I
tensorflow/stream_executor/platform/default/dso_loader.cc:48]
Successfully opened dynamic library libnvinfer.so.7
4. 2020-05-14 10:01:53.998563: I
tensorflow/stream_executor/platform/default/dso_loader.cc:48]
Successfully opened dynamic library libnvinfer_plugin.so.7
5. /usr/lib/python3/dist-packages/h5py/__init__.py:36: FutureWarning:
Conversion of the second argument of issubdtype from `float` to
`np.floating` is deprecated. In future, it will be treated as
`np.float64 == np.dtype(float).type`.
6. from ._conv import register_converters as _register_converters
如你所见,我们的日志信息与之前在Jetson上运行Docker相似。
运行MNIST训练
我们有一个支持GPU的运行节点,所以现在我们可以测试出机器学习的 “Hello world”,并使用MNIST数据集运行TensorFlow 2模型示例。
要运行一个简单的训练会话,以证明GPU的使用情况,应用下面的manifest:
1. apiVersion: v1
2. kind: Pod
3. metadata:
4. name: mnist-training
5. spec:
6. nodeSelector:
7. kubernetes.io/hostname: jetson
8. initContainers:
-
9. name: git-clone
10. image: iceci/utils
11. command:
-
12. "git"
-
13. "clone"
14. - "<https://github.com/IceCI/example-mnist-training.git>"
-
15. "/workspace"
16. volumeMounts:
-
17. mountPath: /workspace
18. name: workspace
19. containers:
-
20. image: icetekio/jetson-nano-tensorflow
21. name: mnist
22. command:
-
23. "python3"
-
24. "/workspace/mnist.py"
25. volumeMounts:
-
26. mountPath: /workspace
27. name: workspace
28. restartPolicy: Never
29. volumes:
-
30. name: workspace
31. emptyDir: {}
从下面的日志中可以看到,GPU正在运行:
1. ...
2. 2020-05-14 11:30:02.846289: I
tensorflow/core/common_runtime/gpu/gpu_device.cc:1697] Adding
visible gpu devices: 0
3. 2020-05-14 11:30:02.846434: I
tensorflow/stream_executor/platform/default/dso_loader.cc:48]
Successfully opened dynamic library libcudart.so.10.2
4. ....
如果你在节点上,你可以通过运行tegrastats命令来测试CPU和GPU的使用情况:
1. upgrade@jetson:~$ tegrastats --interval 5000
2. RAM 2462/3964MB (lfb 2x4MB) SWAP 362/1982MB (cached 6MB) CPU
[52%@1479,41%@1479,43%@1479,34%@1479] EMC_FREQ 0% GR3D_FREQ 9%
PLL@23.5C CPU@26C PMIC@100C GPU@24C AO@28.5C thermal@25C POM_5V_IN
3410/3410 POM_5V_GPU 451/451 POM_5V_CPU 1355/1355
3. RAM 2462/3964MB (lfb 2x4MB) SWAP 362/1982MB (cached 6MB) CPU
[53%@1479,42%@1479,45%@1479,35%@1479] EMC_FREQ 0% GR3D_FREQ 9%
PLL@23.5C CPU@26C PMIC@100C GPU@24C AO@28.5C thermal@24.75C
POM_5V_IN 3410/3410 POM_5V_GPU 451/451 POM_5V_CPU 1353/1354
4. RAM 2461/3964MB (lfb 2x4MB) SWAP 362/1982MB (cached 6MB) CPU
[52%@1479,38%@1479,43%@1479,33%@1479] EMC_FREQ 0% GR3D_FREQ 10%
PLL@24C CPU@26C PMIC@100C GPU@24C AO@29C thermal@25.25C POM_5V_IN
3410/3410 POM_5V_GPU 493/465 POM_5V_CPU 1314/1340
总 结
如你所见,将Jetson Nano连接到Kubernetes集群是一个非常简单的过程。只需几分钟,你就能利用Kubernetes来运行机器学习工作负载——同时也能利用NVIDIA袖珍GPU的强大功能。你将能够在Kubernetes上运行任何为Jetson Nano设计的GPU容器,这可以简化你的开发和测试。
作者: Jakub Czapliński,Icetek编辑
原文链接:
https://medium.com/icetek/how-to-connect-jetson-nano-to-kubernetes-using-k3s-and-k3sup-c715cf2bf212
最后
以上就是独特大地为你收集整理的15分钟连接Jetson Nano与K8S,轻松搭建机器学习集群的全部内容,希望文章能够帮你解决15分钟连接Jetson Nano与K8S,轻松搭建机器学习集群所遇到的程序开发问题。
如果觉得靠谱客网站的内容还不错,欢迎将靠谱客网站推荐给程序员好友。
发表评论 取消回复