概述
重点:
结构体
结构体类型的声明
结构的自引用
结构体变量的定义和初始化
结构体内存对齐
结构体传参
结构体实现位段(位段的填充&可移植性)
结构体
1
结构体的声明
1.1
结构的基础知识
结构是一些值的集合,这些值称为成员变量。结构的每个成员可以是不同类型的变量。
1.2
结构的声明
struct tag
{
member-list;
}variable-list;
例如描述一个学生:
struct Stu
{
char name[20];//名字
int age;//年龄
char sex[5];//性别
char id[20];//学号
}; //分号不能丢
1.3
特殊的声明
在声明结构的时候,可以不完全的声明。
比如:
//匿名结构体类型
struct
{
int a;
char b;
float c;
}x;
struct
{
int a;
char b;
float c;
}a[20], *p;
上面的两个结构在声明的时候省略掉了结构体标签(
tag
)。
那么问题来了?
//
在上面代码的基础上,下面的代码合法吗?
//在上面代码的基础上,下面的代码合法吗?
p = &x;
警告:
编译器会把上面的两个声明当成完全不同的两个类型。
所以是非法的。
1.4
结构的自引用
在结构中包含一个类型为该结构本身的成员是否可以呢?
//代码1
struct Node
{
int data;
struct Node next;
};
//可行否?
如果可以,那sizeof(struct Node)是多少?
正确的自引用方式:
//代码2
struct Node
{
int data;
struct Node* next;
};
注意:
//代码3
typedef struct
{
int data;
Node* next;
}Node;
//这样写代码,可行否?
//不行,因为Node定义在后面,不能还没定义就使用,还得加上struct
//解决方案:
typedef struct Node
{
int data;
struct Node* next;
}Node;
1.5
结构体变量的定义和初始化
有了结构体类型,那如何定义变量,其实很简单。
struct Point
{
int x;
int y;
}p1; //声明类型的同时定义变量p1
struct Point p2; //定义结构体变量p2
//初始化:定义变量的同时赋初值。
struct Point p3 = {x, y};
struct Stu //类型声明
{
char name[15];//名字
int age; //年龄
};
struct Stu s = {"zhangsan", 20};//初始化
struct Node
{
int data;
struct Point p;
struct Node* next;
}n1 = {10, {4,5}, NULL}; //结构体嵌套初始化
struct Node n2 = {20, {5, 6}, NULL};//结构体嵌套初始化
1.6
结构体内存对齐
我们已经掌握了结构体的基本使用了。
现在我们深入讨论一个问题:计算结构体的大小。
这也是一个特别热门的考点:
结构体内存对齐
//
练习
1
struct S1
{
char c1;
int i;
char c2;
};
printf("%dn", sizeof(struct S1)); //12
//
练习
2
struct S2
{
char c1;
char c2;
int i;
};
printf("%dn", sizeof(struct S2)); //8
//
练习
3
struct S3
{
double d;
char c;
int i;
};
printf("%dn", sizeof(struct S3)); //16
//
练习
4-
结构体嵌套问题
struct S4
{
char c1;
struct S3 s3;
double d;
};
printf("%dn", sizeof(struct S4)); //32
考点
如何计算
?
首先得掌握结构体的对齐规则:
1. 第一个成员在与结构体变量偏移量为0的地址处。
2. 其他成员变量要对齐到某个数字(对齐数)的整数倍的地址处。
对齐数 = 编译器默认的一个对齐数 与 该成员大小的较小值。
VS中默认的值为8
3. 结构体总大小为最大对齐数(每个成员变量都有一个对齐数)的整数倍。
4. 如果嵌套了结构体的情况,嵌套的结构体对齐到自己的最大对齐数的整数倍处,结构体的整
体大小就是所有最大对齐数(含嵌套结构体的对齐数)的整数倍。
为什么存在内存对齐
?
大部分的参考资料都是如是说的:
1.
平台原因
(
移植原因
)
:
不是所有的硬件平台都能访问任意地址上的任意数据的;某些硬件平台只能在某些地址处取某些特
定类型的数据,否则抛出硬件异常。
2.
性能原因
:
数据结构
(
尤其是栈
)
应该尽可能地在自然边界上对齐。
原因在于,为了访问未对齐的内存,处理器需要作两次内存访问;而对齐的内存访问仅需要一次访
问。
总体来说:
结构体的内存对齐是拿
空间
来换取
时间
的做法。
那在设计结构体的时候,我们既要满足对齐,又要节省空间,如何做到:
让占用空间小的成员尽量集中在一起
//
例如:
struct S1
{
char c1;
int i;
char c2;
};
struct S2
{
char c1;
char c2;
int i;
};
S1
和
S2
类型的成员一模一样,但是
S1
和
S2
所占空间的大小有了一些区别。
1.7
修改默认对齐数
之前我们见过了
#pragma
这个预处理指令,这里我们再次使用,可以改变我们的默认对齐数。
#include <stdio.h>
#pragma pack(8)//设置默认对齐数为8
struct S1
{
char c1;
int i;
char c2;
};
#pragma pack()//取消设置的默认对齐数,还原为默认
#pragma pack(1)//设置默认对齐数为1
struct S2
{
char c1;
int i;
char c2;
};
#pragma pack()//取消设置的默认对齐数,还原为默认
int main()
{
//输出的结果是什么?
printf("%dn", sizeof(struct S1));
printf("%dn", sizeof(struct S2));
return 0;
}
结论:
结构在对齐方式不合适的时候,我么可以自己更改默认对齐数。
1.8
结构体传参
直接上代码:
struct S
{
int data[1000];
int num;
};
struct S s = {{1,2,3,4}, 1000};
//结构体传参
void print1(struct S s)
{
printf("%dn", s.num);
}
//结构体地址传参
void print2(struct S* ps)
{
printf("%dn", ps->num);
}
int main()
{
print1(s); //传结构体
print2(&s); //传地址
return 0;
}
上面的
print1
和
print2
函数哪个好些?
答案是:首选
print2
函数。
原因:
函数传参的时候,参数是需要压栈,会有时间和空间上的系统开销。
如果传递一个结构体对象的时候,结构体过大,参数压栈的的系统开销比较大,所以会导致性能的
下降。
结论:
结构体传参的时候,要传结构体的地址。
最后
以上就是魁梧电源为你收集整理的结构体相关知识点总结重点:的全部内容,希望文章能够帮你解决结构体相关知识点总结重点:所遇到的程序开发问题。
如果觉得靠谱客网站的内容还不错,欢迎将靠谱客网站推荐给程序员好友。
本图文内容来源于网友提供,作为学习参考使用,或来自网络收集整理,版权属于原作者所有。
发表评论 取消回复