概述
1.理想高通滤波器
高通滤波与低通滤波正好相反,是频域图像的高频部分通过而抑制低频部分。在图像中图像的边缘对应高频分量,因此高通滤波的效果是图像锐化。同样最简单的高通滤波器是理想高通滤波器。通过设置一个频率阈值,将高于该阈值的频率部分通过,而低于阈值的低频部分设置为0。
VTK中理想高通滤波的实例如下:
#include <vtkAutoInit.h> VTK_MODULE_INIT(vtkRenderingOpenGL); #include <vtkSmartPointer.h> #include <vtkJPEGReader.h> #include <vtkImageFFT.h> #include <vtkImageIdealHighPass.h> #include <vtkImageRFFT.h> #include <vtkImageCast.h> #include <vtkImageExtractComponents.h> #include <vtkRenderer.h> #include <vtkImageActor.h> #include <vtkRenderWindow.h> #include <vtkRenderWindowInteractor.h> #include <vtkInteractorStyleImage.h> int main(int argc, char* argv[]) { vtkSmartPointer<vtkJPEGReader> reader = vtkSmartPointer<vtkJPEGReader>::New(); reader->SetFileName("lena.jpg"); reader->Update(); vtkSmartPointer<vtkImageFFT> fftFilter = vtkSmartPointer<vtkImageFFT>::New(); fftFilter->SetInputConnection(reader->GetOutputPort()); fftFilter->Update(); vtkSmartPointer<vtkImageIdealHighPass> highPassFilter = vtkSmartPointer<vtkImageIdealHighPass>::New(); highPassFilter->SetInputConnection(fftFilter->GetOutputPort()); highPassFilter->SetXCutOff(0.1); highPassFilter->SetYCutOff(0.1); highPassFilter->Update(); vtkSmartPointer<vtkImageRFFT> rfftFilter = vtkSmartPointer<vtkImageRFFT>::New(); rfftFilter->SetInputConnection(highPassFilter->GetOutputPort()); rfftFilter->Update(); vtkSmartPointer<vtkImageExtractComponents> ifftExtractReal = vtkSmartPointer<vtkImageExtractComponents>::New(); ifftExtractReal->SetInputConnection(rfftFilter->GetOutputPort()); ifftExtractReal->SetComponents(0); vtkSmartPointer<vtkImageCast> castFilter = vtkSmartPointer<vtkImageCast>::New(); castFilter->SetInputConnection(ifftExtractReal->GetOutputPort()); castFilter->SetOutputScalarTypeToUnsignedChar(); castFilter->Update(); / vtkSmartPointer<vtkImageActor> originalActor = vtkSmartPointer<vtkImageActor>::New(); originalActor->SetInputData(reader->GetOutput()); vtkSmartPointer<vtkImageActor> erodedActor = vtkSmartPointer<vtkImageActor>::New(); erodedActor->SetInputData(castFilter->GetOutput()); / double leftViewport[4] = { 0.0, 0.0, 0.5, 1.0 }; double rightViewport[4] = { 0.5, 0.0, 1.0, 1.0 }; vtkSmartPointer<vtkRenderer> leftRenderer = vtkSmartPointer<vtkRenderer>::New(); leftRenderer->AddActor(originalActor); leftRenderer->SetViewport(leftViewport); leftRenderer->SetBackground(1.0, 1.0, 1.0); leftRenderer->ResetCamera(); vtkSmartPointer<vtkRenderer> rightRenderer = vtkSmartPointer<vtkRenderer>::New(); rightRenderer->AddActor(erodedActor); rightRenderer->SetViewport(rightViewport); rightRenderer->SetBackground(1.0, 1.0, 1.0); rightRenderer->ResetCamera(); / vtkSmartPointer<vtkRenderWindow> rw = vtkSmartPointer<vtkRenderWindow>::New(); rw->SetSize(640, 320); rw->AddRenderer(leftRenderer); rw->AddRenderer(rightRenderer); rw->SetWindowName("IdealHighPassExample"); vtkSmartPointer<vtkRenderWindowInteractor> rwi = vtkSmartPointer<vtkRenderWindowInteractor>::New(); vtkSmartPointer<vtkInteractorStyleImage> style = vtkSmartPointer<vtkInteractorStyleImage>::New(); rwi->SetInteractorStyle(style); rwi->SetRenderWindow(rw); rwi->Start(); return 0; }
同低通滤波一样,首先将读入图像通过vtkImageFFT转换到频域空间,定义vtkImageIdealHighPass对象,并通过SetXCutOff ()和SetYCutOff() 设置X和Y方向的截止频率。然后通过vtkImageRFFT将处理后的图像转换到空域中,得到高通滤波图像。为了显示的需要,还需要提取图像分量和数据类型的转换。
下面是理想高通滤波的执行结果:
从结果看出高通滤波后图像得到锐化处理,图像中仅剩下边缘。
2.巴特沃兹高通滤波
理想高通滤波器不能通过电子元器件来实现,而且存在振铃现象。在实际中最常使用的高通滤波器是巴特沃斯高通滤波器。该滤波器的转移函数是:
D(u,v)表示频域中点到频域平面的距离,是截止频率。当D(u,v)大于时,对应的H(u,v)逐渐接近1,从而使得高频部分得以通过;而当D(u,v)小于时,H(u,v)逐渐接近0,实现低频部分过滤。巴特沃斯高通滤波器在VTK中对应vtkImageButterworthHighPass类。
下面代码说明了vtkImageButterworthHighPass对图像进行高通滤波:
#include <vtkAutoInit.h> VTK_MODULE_INIT(vtkRenderingOpenGL); #include <vtkSmartPointer.h> #include <vtkJPEGReader.h> #include <vtkImageFFT.h> #include <vtkImageButterworthHighPass.h> #include <vtkImageRFFT.h> #include <vtkImageExtractComponents.h> #include <vtkImageCast.h> #include <vtkRenderer.h> #include <vtkImageActor.h> #include <vtkRenderWindow.h> #include <vtkRenderWindowInteractor.h> #include <vtkInteractorStyleImage.h> int main(int argc, char* argv[]) { vtkSmartPointer<vtkJPEGReader> reader = vtkSmartPointer<vtkJPEGReader>::New(); reader->SetFileName("lena.jpg"); reader->Update(); vtkSmartPointer<vtkImageFFT> fftFilter = vtkSmartPointer<vtkImageFFT>::New(); fftFilter->SetInputConnection(reader->GetOutputPort()); fftFilter->Update(); vtkSmartPointer<vtkImageButterworthHighPass> highPassFilter = vtkSmartPointer<vtkImageButterworthHighPass>::New(); highPassFilter->SetInputConnection(fftFilter->GetOutputPort()); highPassFilter->SetXCutOff(0.1); highPassFilter->SetYCutOff(0.1); highPassFilter->Update(); vtkSmartPointer<vtkImageRFFT> rfftFilter = vtkSmartPointer<vtkImageRFFT>::New(); rfftFilter->SetInputConnection(highPassFilter->GetOutputPort()); rfftFilter->Update(); vtkSmartPointer<vtkImageExtractComponents> ifftExtractReal = vtkSmartPointer<vtkImageExtractComponents>::New(); ifftExtractReal->SetInputConnection(rfftFilter->GetOutputPort()); ifftExtractReal->SetComponents(0); vtkSmartPointer<vtkImageCast> castFilter = vtkSmartPointer<vtkImageCast>::New(); castFilter->SetInputConnection(ifftExtractReal->GetOutputPort()); castFilter->SetOutputScalarTypeToUnsignedChar(); castFilter->Update(); vtkSmartPointer<vtkImageActor> originalActor = vtkSmartPointer<vtkImageActor>::New(); originalActor->SetInputData(reader->GetOutput()); vtkSmartPointer<vtkImageActor> erodedActor = vtkSmartPointer<vtkImageActor>::New(); erodedActor->SetInputData(castFilter->GetOutput()); // double leftViewport[4] = { 0.0, 0.0, 0.5, 1.0 }; double rightViewport[4] = { 0.5, 0.0, 1.0, 1.0 }; vtkSmartPointer<vtkRenderer> leftRenderer = vtkSmartPointer<vtkRenderer>::New(); leftRenderer->AddActor(originalActor); leftRenderer->ResetCamera(); leftRenderer->SetViewport(leftViewport); leftRenderer->SetBackground(1.0, 1.0, 1.0); vtkSmartPointer<vtkRenderer> rightRenderer = vtkSmartPointer<vtkRenderer>::New(); rightRenderer->AddActor(erodedActor); rightRenderer->SetViewport(rightViewport); rightRenderer->SetBackground(1.0, 1.0, 1.0); rightRenderer->ResetCamera(); vtkSmartPointer<vtkRenderWindow> rw = vtkSmartPointer<vtkRenderWindow>::New(); rw->AddRenderer(leftRenderer); rw->AddRenderer(rightRenderer); rw->SetSize(640, 320); rw->Render(); rw->SetWindowName("Frequency_ButterworthHighPass"); / vtkSmartPointer<vtkRenderWindowInteractor> rwi = vtkSmartPointer<vtkRenderWindowInteractor>::New(); vtkSmartPointer<vtkInteractorStyleImage> style = vtkSmartPointer<vtkInteractorStyleImage>::New(); rwi->SetInteractorStyle(style); rwi->SetRenderWindow(rw); rwi->Start(); return 0; }
vtkImageButterworthHighPass与理想高通滤波使用方法一致。需要设置X和Y轴的截止频率,为了便于比较,其截止频域与理想高通滤波设置一致。
下图是执行结果:
3.参看资料
1.《C++ primer》
2.《The VTK User’s Guide – 11thEdition》
3. 张晓东, 罗火灵. VTK图形图像开发进阶[M]. 机械工业出版社, 2015.
最后
以上就是温柔老鼠为你收集整理的VTK修炼之道42:频域处理_高通滤波(理想+巴特沃兹)1.理想高通滤波器2.巴特沃兹高通滤波3.参看资料的全部内容,希望文章能够帮你解决VTK修炼之道42:频域处理_高通滤波(理想+巴特沃兹)1.理想高通滤波器2.巴特沃兹高通滤波3.参看资料所遇到的程序开发问题。
如果觉得靠谱客网站的内容还不错,欢迎将靠谱客网站推荐给程序员好友。
发表评论 取消回复