概述
单位冲激函数性质
- 筛选性质
- 取样性质
- 尺度性质证明
- 根据冲激函数尺度性质证明 cos ( w 0 t ) cos (w_0t) cos(w0t)的傅里叶变换
筛选性质
设信号
s
(
t
)
displaystyle sleft( t right)
s(t)是一个在
t
=
t
0
t = {t_0}
t=t0处连续的函数,则有
s
(
t
)
δ
(
t
−
t
0
)
=
s
(
t
0
)
δ
(
t
−
t
0
)
sdisplaystyle left( t right)delta (t - {t_0}) = sleft( {{t_0}} right)delta (t - {t_0})
s(t)δ(t−t0)=s(t0)δ(t−t0)
取样性质
设信号
s
(
t
)
sleft( t right)
s(t)是一个在
t
=
t
0
t = {t_0}
t=t0处连续的函数,则有
∫
−
∞
+
∞
s
(
t
)
δ
(
t
−
t
0
)
d
t
=
s
(
t
0
)
displaystyle int_{ - infty }^{ + infty } {sleft( t right)} delta (t - {t_0})dt = s({t_0})
∫−∞+∞s(t)δ(t−t0)dt=s(t0)
特别地,当
t
0
=
0
{t_0} = 0
t0=0时
∫
−
∞
+
∞
s
(
t
)
δ
(
t
)
d
t
=
s
(
0
)
int_{ - infty }^{ + infty } {sleft( t right)} delta (t)dt = s(0)
∫−∞+∞s(t)δ(t)dt=s(0)
尺度性质证明
由上图可知矩形的面积如下:
S
[
r
e
c
t
(
t
)
]
=
1
S
[
r
e
c
t
(
a
t
)
]
=
1
∣
a
∣
begin{aligned} displaystyle S[rect(t)] &= 1\ S[rect(at)] &= frac{1}{{|a|}} end{aligned}
S[rect(t)]S[rect(at)]=1=∣a∣1
当
τ
→
0
tau to {rm{0}}
τ→0时,有
lim
τ
→
0
r
e
c
t
(
t
)
=
δ
(
t
)
lim
τ
→
0
r
e
c
t
(
a
t
)
=
1
∣
a
∣
δ
(
t
)
begin{aligned} mathop {lim }limits_{tau to {rm{0}}} rect(t) &= delta (t)\ displaystyle mathop {lim }limits_{tau to {rm{0}}} rect(at) &= frac{1}{{|a|}}delta (t) end{aligned}
τ→0limrect(t)τ→0limrect(at)=δ(t)=∣a∣1δ(t)
证明:
δ
(
a
t
−
b
)
=
1
∣
a
∣
δ
(
t
−
b
a
)
displaystyle delta (at - b) = frac{1}{{|a|}}delta (t - frac{b}{a})
δ(at−b)=∣a∣1δ(t−ab)
当
a
>
0
a > 0
a>0时,令
a
t
−
b
=
x
at - b = x
at−b=x
∫
−
∞
+
∞
s
(
t
)
δ
(
a
t
−
b
)
d
t
=
1
a
∫
−
∞
+
∞
s
(
1
a
x
+
b
a
)
δ
(
x
)
d
x
=
1
a
s
(
b
a
)
begin{aligned} displaystyle int_{ - infty }^{ + infty } {sleft( t right)} delta (at - b)dt &= frac{1}{a}int_{ - infty }^{ + infty } {sleft( {frac{1}{a}x + frac{b}{a}} right)} delta (x)dx\ & = frac{1}{a}sleft( {frac{b}{a}} right) displaystyle end{aligned}
∫−∞+∞s(t)δ(at−b)dt=a1∫−∞+∞s(a1x+ab)δ(x)dx=a1s(ab)
根据取样性质
∫
−
∞
+
∞
1
a
s
(
t
)
δ
(
t
−
b
a
)
d
t
=
1
a
s
(
b
a
)
int_{ - infty }^{ + infty } {frac{1}{a}sleft( t right)} delta (t - frac{b}{a})dt = frac{1}{a}sleft( {frac{b}{a}} right)
∫−∞+∞a1s(t)δ(t−ab)dt=a1s(ab)
当
a
<
0
a < 0
a<0时,令
−
∣
a
∣
t
−
b
=
x
-|a|t - b = x
−∣a∣t−b=x
{
t
:
−
∞
→
+
∞
x
:
+
∞
→
−
∞
left{ begin{array}{l} t: - infty to + infty \ x: + infty to - infty end{array} right.
{t:−∞→+∞x:+∞→−∞
∫ − ∞ + ∞ s ( t ) δ ( a t − b ) d t = − 1 ∣ a ∣ ∫ + ∞ − ∞ s ( − 1 ∣ a ∣ x − b ∣ a ∣ ) δ ( x ) d x = 1 ∣ a ∣ ∫ − ∞ + ∞ s ( − 1 ∣ a ∣ x − b ∣ a ∣ ) δ ( x ) d x = 1 ∣ a ∣ s ( − b ∣ a ∣ ) begin{aligned} displaystyle {int_{ - infty }^{ + infty } {sleft( t right)} delta (at - b)dt }&={ - frac{1}{{|a|}}int_{ + infty }^{ - infty } {sleft( { - frac{1}{{|a|}}x - frac{b}{{|a|}}} right)} delta (x)dx}\ displaystyle &= frac{1}{{|a|}}int_{ - infty }^{ + infty } {sleft( { - frac{1}{{|a|}}x - frac{b}{{|a|}}} right)} delta (x)dx\ displaystyle &= frac{1}{{|a|}}sleft( { - frac{b}{{|a|}}} right) end{aligned} ∫−∞+∞s(t)δ(at−b)dt=−∣a∣1∫+∞−∞s(−∣a∣1x−∣a∣b)δ(x)dx=∣a∣1∫−∞+∞s(−∣a∣1x−∣a∣b)δ(x)dx=∣a∣1s(−∣a∣b)
同样根据取样性质,且
∣
a
∣
=
−
a
|a| = - a
∣a∣=−a
∫
−
∞
+
∞
1
∣
a
∣
s
(
t
)
δ
(
t
+
b
∣
a
∣
)
d
t
=
1
∣
a
∣
s
(
−
b
∣
a
∣
)
int_{ - infty }^{ + infty } {frac{1}{{|a|}}sleft( t right)} delta (t + frac{b}{{|a|}})dt = frac{1}{{|a|}}sleft( { - frac{b}{{|a|}}} right)
∫−∞+∞∣a∣1s(t)δ(t+∣a∣b)dt=∣a∣1s(−∣a∣b)
得证。
根据冲激函数尺度性质证明 cos ( w 0 t ) cos (w_0t) cos(w0t)的傅里叶变换
根据欧拉公式
cos
(
w
t
)
=
1
2
(
e
j
w
t
+
e
−
j
w
t
)
cos (wt) = frac{1}{2}({e^{jwt}} + {e^{ - jwt}})
cos(wt)=21(ejwt+e−jwt)
其Fourier变换为
G
(
f
)
=
∫
+
∞
−
∞
cos
(
w
0
t
)
e
−
j
w
t
d
t
=
1
2
∫
+
∞
−
∞
(
e
j
w
0
t
+
e
−
j
w
0
t
)
e
−
j
w
t
d
t
=
1
2
∫
+
∞
−
∞
(
e
−
j
2
π
(
f
−
f
0
)
t
+
e
−
j
2
π
(
f
+
f
0
)
t
)
d
t
=
1
2
[
δ
(
f
−
f
0
)
+
δ
(
f
+
f
0
)
]
begin{aligned} displaystyle G(f) &= int_{ + infty }^{ - infty } {cos ({w_0}t)} {e^{ - jwt}}dt\ displaystyle & = frac{1}{2}int_{ + infty }^{ - infty } {({e^{j{w_0}t}} + {e^{ - j{w_0}t}})} {e^{ - jwt}}dt\ displaystyle & = frac{1}{2}int_{ + infty }^{ - infty } {({e^{ - j2pi (f - {f_0})t}} + {e^{ - j2pi (f + {f_0})t}})} dt\ displaystyle & = frac{1}{2}[delta (f - {f_0}) + delta (f + {f_0})] displaystyle end{aligned}
G(f)=∫+∞−∞cos(w0t)e−jwtdt=21∫+∞−∞(ejw0t+e−jw0t)e−jwtdt=21∫+∞−∞(e−j2π(f−f0)t+e−j2π(f+f0)t)dt=21[δ(f−f0)+δ(f+f0)]
根据冲激函数尺度性质
δ
(
w
−
w
0
)
=
δ
[
2
π
(
f
−
f
0
)
]
=
1
2
π
δ
[
(
f
−
f
0
)
]
begin{aligned} displaystyle delta (w - {w_0}) &= delta [2pi (f - {f_0})]\ & = frac{1}{{2pi }}delta [(f - {f_0})] end{aligned}
δ(w−w0)=δ[2π(f−f0)]=2π1δ[(f−f0)]
所以
G
(
w
)
=
π
[
δ
(
w
−
w
0
)
+
δ
(
w
+
w
0
)
]
G(w) = pi [delta (w - {w_0}) + delta (w + {w_0})]
G(w)=π[δ(w−w0)+δ(w+w0)]
最后
以上就是殷勤哈密瓜为你收集整理的单位冲激函数性质的全部内容,希望文章能够帮你解决单位冲激函数性质所遇到的程序开发问题。
如果觉得靠谱客网站的内容还不错,欢迎将靠谱客网站推荐给程序员好友。
发表评论 取消回复