概述
1.原理
(1)基于ros订阅有关目标信息的消息
获取每帧中每个目标的id,位置坐标(px,py),尺寸大小(ox,oy)
(2)获取每个目标的状态量Object(id,px,py,vx,vy,ax,ay,r,ox,oy)
通过位置坐标的差分计算出速度v,再通过速度的差分计算加速度a,选取目标长宽的最大值一半作为有效半径r
(3)碰撞检测
为每帧中的所有目标两两之间进行时间T内的轨迹预测,并采用圆形检测(当两者间的相对位移小于两者的有效半径之和判定为有碰撞风险)判断是否有碰撞风险,并对有碰撞风险的目标进行标记。
轨迹预测与圆形检测(pzjc.py):
时间T的确定:计算两目标的x、y向速度最大值与最大刹车加速度a_brake之比t,将其作为预测时间T(至少为1s)
T=max(abs(object1[3]/self.a_brake), abs(object2[3]/self.a_brake), abs(object1[4]/self.a_brake), abs(object2[4]/self.a_brake), 1)
def judge_pre(self, object1, object2)函数为预判断是否具有发生碰撞的风险,即是否存在仅就x或y向考虑,可能会发生碰撞
def xv_cal(self, v0, x0, a, t, v_state)函数进行轨迹预测,更新预测过程中目标的位置坐标和速度信息
def distance_cal(self, x1, y1, x2, y2)函数计算轨迹预测过程中两目标间的相对位移
def collision_detect(self, object1, object2)函数对两目标间判断在预测时间T内是否会发生碰撞,具体地,预测过程中两目标间相对位移小于两目标的有效半径之和时判定为具有碰撞风险,并输出可能发生碰撞区域的信息
def collision_predict(self, information)函数对每帧中的全部目标两两间判断是否具有碰撞风险,输出全部具有碰撞趋势的目标信息和可能发生碰撞区域的信息
(4)发布碰撞预警信息
将具有碰撞风险目标的id,px,py,ox,oy以及预测会发生碰撞的区域(x,y,r)发布出去
2.代码
ros接受每帧中的目标信息:id、中心坐标和尺寸大小
对每个目标进行碰撞检测(pzjc2.py)
发出可能发生碰撞的目标和发生碰撞的区域(collision.py)
#! /usr/bin/env python3
#python2
import roslib
import rospy
from std_msgs.msg import Header
from std_msgs.msg import String
from sensor_msgs.msg import CompressedImage
from visualization_msgs.msg import Marker, MarkerArray
from perception_msgs.msg import Obstacle, ObstacleArray
# from ros_numpy import msgify
# from cv_bridge import CvBridge
import sys
sys.path.remove('/opt/ros/melodic/lib/python2.7/dist-packages')
from socketserver import BaseRequestHandler,ThreadingTCPServer
import threading
import time
import numpy as np
import pzjc2 as cd
BUF_SIZE=5000
#python3
global_data="wo shi ni die"*100
class SubscribeAndPublish:
def __init__(self):
self.all_obstacle_str=''
self.sub_marker_array_name=rospy.get_param("~sub_marker_array_name")
print(self.sub_marker_array_name)
self.sub_marker_array= rospy.Subscriber(self.sub_marker_array_name, MarkerArray,self.callback_marker_array)
self.id_array=np.zeros(100,np.float32)
self.id_arrayp=np.zeros(100,np.float32)
self.infor=np.zeros((100,10),np.float64)
self.inforp=np.zeros((100,10),np.float64)
self.deltatime=0.1
#
self.pub_marker_array_name=rospy.get_param("~pub_collision_array_name")
self.pub = rospy.Publisher(self.pub_marker_array_name,MarkerArray,queue_size=20)
def make_empty_marker_cylinder(self):
marker = Marker()
marker.header.frame_id = 'collision'
marker.header.stamp = rospy.Time.now()
marker.id = 0
# enumerate subsequent markers here
marker.action = Marker.ADD
# can be ADD, REMOVE, or MODIFY
marker.ns = "collision"
marker.type = Marker.CYLINDER
marker.pose.position.x = 1.0
marker.pose.position.y = 1.0
marker.pose.position.z = 0.0
marker.pose.orientation.x = 0.0
marker.pose.orientation.y = 0.0
marker.pose.orientation.z = 0.0
marker.pose.orientation.w = 1.0
marker.scale.x = 1
# artifact of sketchup export
marker.scale.y = 1
# artifact of sketchup export
marker.scale.z = 1
# artifact of sketchup export
marker.color.r = 1.0
marker.color.g = 0
marker.color.b = 0
marker.color.a = 1.0
# marker.lifetime = rospy.Duration()
# will last forever unless modifie
marker.lifetime = rospy.Duration(0.1)
# will last forever unless modifie
marker.text = "COLLISION"
return marker
def callback_marker_array(self,mka):
# thistime=time.time()
# print('time',thistime)
print('')
print('rec obs')
num=len(mka.markers)
Object=np.zeros((num,10),np.float32)
state_collision=np.zeros(num,np.int8)
print('num of markers',num)
if num>0:
for i in range(0,num):
one_str=self.one_m_to_str(mka.markers[i])
#get information of object
id=mka.markers[i].id
id=int(id)
px=mka.markers[i].pose.position.x
py=mka.markers[i].pose.position.y
ox=mka.markers[i].scale.x
oy=mka.markers[i].scale.y
r=max(ox,oy)/2
state=0
statep=0
for k in range(0,len(self.id_arrayp)): #judge whether object has appeared once
if self.id_arrayp[k]==id:
statep=k+1
for j in range(0,len(self.id_array)): #judge whether object has appeared twice
if self.id_array[j]==id:
state=j+1
#print(statep,state)
if statep==0:
vx=0
vy=0
ax=0
ay=0
self.inforp[i]=[id,px,py,0,0,0,0,r,ox,oy]
self.infor[i]=[id,0,0,0,0,0,0,r,ox,oy]
self.id_arrayp[i]=id
self.id_array[i]=0
if state==0 and statep: #Differential calculation speed
vx=(px-self.inforp[statep-1][1])/self.deltatime
vy=(py-self.inforp[statep-1][2])/self.deltatime
ax=0
ay=0
self.infor[i]=[id,px,py,vx,vy,ax,ay,r,ox,oy]
self.id_arrayp[i]=id
self.id_array[i]=id
if state and statep: #Differential calculation acceleration
vx=(px-self.infor[state-1][1])/self.deltatime
vy=(py-self.infor[state-1][2])/self.deltatime
ax=(vx-self.infor[state-1][3])/self.deltatime
ay=(vy-self.infor[state-1][4])/self.deltatime
self.inforp[i]=self.infor[i]
self.infor[i]=[id,px,py,vx,vy,ax,ay,r,ox,oy]
print(id,px,py,vx,vy,ax,ay,r,ox,oy)
Object[i]=[id,px,py,vx,vy,ax,ay,r,ox,oy]
d=cd.Collision_Detection()
state_collision,area_collision=d.collision_predict(Object)
count=0 #numbei of collision object
Object_collision=[]
for j in range(0,num):
if state_collision[j]:
print("collision object id",int(Object[j][0]),":")
print('x:',Object[j][1],'y:',Object[j][2],'scale_x:',Object[j][8],'scale_y:',Object[j][9])
count+=1
Object_collision=np.zeros((count,5),np.float32)
i=0
for j in range(0,num):
if state_collision[j]:
Object_collision[i]=[Object[j][0],Object[j][1],Object[j][2],Object[j][8],Object[j][9]]
i+=1
print(Object_collision)
print("area_collision:",area_collision)
#发布collision信息
test_collision_array=MarkerArray()
for i in range(0,count):
tmp=self.make_empty_marker_cylinder()
tmp.id =int(Object_collision[i][0])
tmp.pose.position.x=Object_collision[i][1]
tmp.pose.position.y=Object_collision[i][2]
tmp.scale.x =Object_collision[i][3]
tmp.scale.y =Object_collision[i][4]
test_collision_array.markers.append(tmp)
#print("(len(area_collision)",(len(area_collision)))
for i in range(len(area_collision)):
tmp=self.make_empty_marker_cylinder()
tmp.id=0
tmp.pose.position.x=area_collision[i][0]
tmp.pose.position.y=area_collision[i][1]
tmp.scale.x =area_collision[i][2]
tmp.scale.y =area_collision[i][2]
tmp.color.r=0
tmp.color.b=1.0
test_collision_array.markers.append(tmp)
self.pub.publish(test_collision_array)
print("publish collision once!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!")
def main():
rospy.init_node('road_mks_tcp_server', anonymous=True)
#####################
#开启ros
t=SubscribeAndPublish()
#####################
rospy.spin()
if __name__ == "__main__":
main()
实现圆形检测原理过程(pzjc2.py)
import os
import math
import numpy as np
class Collision_Detection:
#limit v to [-60,60](m/s)
def __init__(self):
self.v_max=60
self.v_min=-60
self.a_brake=7.5
#print("Collision_Detection init")
def collision_predict(self, information):
#information[i]=[id, x, y, vx, vy, ax, ay, r, ox, oy]
num=len(information)
Object=np.zeros((num, 10), dtype='float32') #object information
Object_state=np.zeros(num, dtype='float32') #collision warning label
#read information for each target
count_object=0
for arr in information:
Object[count_object]=arr
count_object+=1
num_collision_area=0
collision_area=[]
#collision warning detection between two object
for i in range(num):
for j in range(i+1, num, 1):
state=0
if self.judge_pre(Object[i], Object[j])==1:
#remove objects that are far away or do not collide
d_rel=[]
state, area=self.collision_detect(Object[i], Object[j])
#print(d_rel)
if state==1:
Object_state[i]=1
Object_state[j]=1
collision_area.append(area)
return Object_state, collision_area
def judge_pre(self, object1, object2):
#If drive at the current speed, collision may occur in both X and Y directions in the next T.
r1=object1[7]*1.1
r2=object2[7]*1.1
#calculate relative x, y , vx, vy
x=object1[1]-object2[1]
y=object1[2]-object2[2]
vx=object1[3]-object2[3]
vy=object1[4]-object2[4]
T=max(abs(object1[3]/self.a_brake), abs(object2[3]/self.a_brake), abs(object1[4]/self.a_brake), abs(object2[4]/self.a_brake), 1) #judge time
#print("T:",T)
result_x=0 #if 1, maybe collision in x axis
result_y=0 #if 1, maybe collision in y axis
result=0
if x<0:
x=x+r1+r2
if x>0:
x=0
result=1
else:
x=x-r1-r2
if x<0:
x=0
result=1
if y<0:
y=y+r1+r2
if y>0:
y=0
result=1
else:
y=y-r1-r2
if y<0:
y=0
result=1
if vx!=0:
tx=x/vx
if tx<=T:
result_x=1
if vy!=0:
ty=y/vy
if ty<=T:
result_y=1
if result_x==1&result_y==1:
result=1
return result
def collision_detect(self, object1, object2): #object1:[id, x, y, vx, vy, ax, ay, r, ox, oy]
x1=object1[1]
y1=object1[2]
x2=object2[1]
y2=object2[2]
v1_x=object1[3]
v1_y=object1[4]
v2_x=object2[3]
v2_y=object2[4]
a1_x=object1[5]
a1_y=object1[6]
a2_x=object2[5]
a2_y=object2[6]
r1=object1[7]*1.1
r2=object2[7]*1.1
T=max(abs(object1[3]/self.a_brake), abs(object2[3]/self.a_brake), abs(object1[4]/self.a_brake), abs(object2[4]/self.a_brake), 1)
#predict time
t=0.1 #time gap for detection
state=0 #0:safe; 1:collision
collision_area=[0,0,0] #[x,y,r],information of collision area
num=int(T/t)
d_rel=[] #relative distance for cars
#judge whether it is deceleration. 0:speed up; 1:slow down
v1_x_state=0
v1_y_state=0
v2_x_state=0
v2_y_state=0
state_coll=0
for i in range(num):
#update x,v
x1, v1_x, v1_x_state = self.xv_cal(v1_x, x1, a1_x, t, v1_x_state)
y1, v1_y, v1_y_state = self.xv_cal(v1_y, y1, a1_y, t, v1_y_state)
x2, v2_x, v2_x_state = self.xv_cal(v2_x, x2, a2_x, t, v2_x_state)
y2, v2_y, v2_y_state = self.xv_cal(v2_y, y2, a2_y, t, v2_y_state)
#calculate relativee distance
distance = self.distance_cal(x1, y1, x2, y2)
d_rel.append(distance)
d_safe = r1+r2
if distance<d_safe:
state=1
state_coll+=1
if state_coll==1:
x=(x1+x2)/2
y=(y1+y2)/2
r=r1+r2
collision_area=[x,y,r]
return state, collision_area
def distance_cal(self, x1, y1, x2, y2):
distance = math.sqrt(pow((x1-x2), 2) + pow((y1-y2), 2))
return distance
def xv_cal(self, v0, x0, a, t, v_state):
if a==0: #uniform velocity
x=x0+v0*t
v=v0
else:
if v0*a<0: #slow down
v_state=1
if v_state==1:
v=v0+a*t
if v*v0<=0:
v=0
x1=(v*v-v0*v0)/(2*a)
t1=(v-v0)/a
x2=v*(t-t1)
x=x0+x1+x2
else:
x=(v*v-v0*v0)/(2*a)+x0
else: #speed up
v = v0+a*t
if v>self.v_max:
v=self.v_max
x1=(v*v-v0*v0)/(2*a)
t1=(v-v0)/a
x2=v*(t-t1)
x=x0+x1+x2
elif v<self.v_min:
v=self.v_min
x1=(v*v-v0*v0)/(2*a)
t1=(v-v0)/a
x2=v*(t-t1)
x=x0+x1+x2
else:
x=(v*v-v0*v0)/(2*a)+x0
return x, v, v_state
if __name__ == '__main__':
#only o1 and o2 will collide
#[id, x, y, vx, vy, ax, ay, r, ox, oy]
o1=[1,0,0,10,10,1,1,1,1,1]
o2=[2,10,10,-4,-4,-2,-2,1,1,1]
o3=[3,15,15,10,10,1,1,1,1,1]
o4=[1,1,0,10,10,1,1,1,1,1]
o=[o1, o2, o3, o4]
print(o)
t=Collision_Detection()
state,area=t.collision_predict(o)
print(state)
print(area)
3.如何启动碰撞预警代码
(1)前置准备
roscore #启动ros
rosbag play -l xxx.bag #循环播放xxx.bag
(2)碰撞预警代码启动:
roslaunch collision collision.launch
(3)观测预警效果
rviz #启动rviz
Fixed Frame改为collision
点击add,选中By topic中collision_marker下的MarkerArray,点击ok,获取观测结果
最后
以上就是阳光大炮为你收集整理的碰撞预警检测1.原理2.代码3.如何启动碰撞预警代码的全部内容,希望文章能够帮你解决碰撞预警检测1.原理2.代码3.如何启动碰撞预警代码所遇到的程序开发问题。
如果觉得靠谱客网站的内容还不错,欢迎将靠谱客网站推荐给程序员好友。
发表评论 取消回复