我是靠谱客的博主 苗条白猫,最近开发中收集的这篇文章主要介绍智能驾驶计算平台算力技术,觉得挺不错的,现在分享给大家,希望可以做个参考。

概述

智能驾驶计算平台算力技术
域控制器:高算力平台助推高级别智能驾驶,高通布局加速
英伟达仍是高算力平台首选,2022年开启量产周期。根据我们的统计,英伟达仍是高算力平台首选,目前主打高级别智能驾驶的厂商,例如蔚来、小鹏、理想等下一款车型均搭载了基于Orin的智能驾驶平台,并有望在明年开启量产节奏。除较高的算力外,英伟达的优势还在于:1)经过Parker、Xavier、Orin三代产品迭代而形成的完整工具链,对开发者更为友好,有助于提升开发效率;2)打造了从数据采集、标注,到仿真训练,再到车端部署,及后续模型持续迭代的端到端解决方案,以提高对数据的运用能力,加速产品落地;3)得益于多年积累,逐渐丰富的AI算子库,以保障开发者可以更快、更高效地部署相关模型;4)完整的硬件生态,合作伙伴包括OV、索尼、Velodyne等各类传感器厂商。
本文参考了智能计算芯世界文章
https://mp.weixin.qq.com/s/OXId-6qJ_IUtcQGddIV7-Q
以及未来智库的文章
https://xueqiu.com/9508834377/207369912
华为MDC初露锋芒,已被北汽、长城、长安等厂商采用。自2018年推出第一代MDC以来,华为的智能驾驶计算平台至今已迭代出3个版本,形成了完整且成熟的产品矩阵。据华为官网资料,该平台具备“三高一低”的技术优势:1)性能高,该平台算力最高可达400TOPS,满足L4级别自动驾驶算力要求;2)安全可靠性高,从信息安全、功能安全、车规及流程管理三大维度构建安全防护体系,保护数据隐私并应对严苛车载环境;3)能效高,处理器运算能力达1TOPS/W,在降低能耗、延长续航里程等方面表现突出;4)确定性低时延,时延最长仅达200ms,提升自动驾驶安全性。就合作模式而言,华为采用Huawei Inside模式与车企联合开发智能汽车,目前华为MDC已装载应用于北汽极狐阿尔法S、长城机甲龙、长安阿维塔E11等车型上。
高通Snapdragon Ride平台进展迅猛,有望成为智能驾驶中的主流供应商。2020年1月7日,高通正式推出可扩展的开放自动驾驶平台Snapdragon Ride,包括安全系统级芯片、安全加速器和自动驾驶软件栈,满足从L1-L3级高级驾驶辅助以及L4/L5级自动驾驶复杂运算需求,将于2022年量产装车。2021年10月4日,高通与投资机构SSW Partners以45亿美元的价格共同收购维宁尔,并把维宁尔的自动驾驶平台Arriver纳入Ride中,以提升在智能驾驶方面的竞争力。2021年11月16日,高通与宝马达成在自动驾驶领域的战略合作,宝马Neue Klasse系列车型将搭载高通Snapdragon Ride平台,新车将于2025年量产。
在这里插入图片描述

图:高通Snapdragon Ride平台
算法解决方案:高速领航和自主泊车类智能驾驶算法有望率先落地
高级智能驾驶场景中,智能领航(ICC)和代客泊车(AVP)有望率先落地。结合技术的提升和场景本身的特点,我们认为高速和泊车场景有望率先落地高级别的智能驾驶。在高速场景,智能领航功能可以实现点到点的全场景自动行驶,一定程度上解放双手。在泊车场景,代客泊车可以在全新停车场景实现自动停取,提高停取车效率,升级用户体验。不同于此前定速巡航、360度环视等功能,智能领航和代客泊车等功能对于用户的感知更为明显,后者一方面可以帮助车厂,快速在智能驾驶的初级阶段占领用户心智;同时也可针对这些功能推出软件订阅服务,演进出新的商业模式,预计车厂后续将通过自研、合作、建立生态圈等方式,持续加码在软件和算法方面的能力。
智能汽车算力解决方案
在这里插入图片描述

智能座舱是实现千人千面汽车驾乘体验的重心所在,新势力车企与领先自主品牌车企率先发力,“大屏化”、“多屏化”、“多模态交互”、“一芯多屏”成为座舱发展的热门趋势,伴随着传感器规模的增长与交互模式的复杂化,智能座舱对芯片的算力需求亦水涨船高。
座舱高算力需求驱动下,以高通第3代汽车数字座舱平台为代表的高性能处理器成为领先车企旗舰车型的主流选择,骁龙系列芯片加速上车。
在这里插入图片描述

在感知、交互、场景应用持续升级的背景下,座舱芯片需支撑大规模传感器数据处理、持续攀升的AI算法数量与海量应用软件服务,座舱数据量与处理需求将超过手机,算力需求飞速增长。作为操作系统级车联网解决方案供应商,座舱计算平台大算力发展已成必然趋势。大算力的座舱SoC芯片将减少组件数量,降低架构复杂程度,智能座舱计算平台将持续向集成式解决方案演进。
在这里插入图片描述

伴随着ADAS辅助驾驶功能在新车市场上渗透率的不断提升,新势力与领先自主品牌车企在智能驾驶领域的厮杀日益激烈,智能驾驶传感器配置走向“内卷”,以蔚来、小鹏、极狐为代表的车型更是率先宣布激光雷达量产上车。当前智能驾驶芯片市场呈现Mobileye与英伟达二分天下之势,以地平线、海思为代表的本土化芯片厂商凭借AI计算与大算力优势在自主品牌车企市场中占据一席之地,率先实现国产芯片量产上车。
在这里插入图片描述
为保证车辆在全生命周期内的持续软件升级能力,主机厂在智能驾驶上采取“硬件预置,软件升级”的策略,通过预置大算力芯片,为后续软件与算法升级优化提供足够发展空间。以蔚来、智己、威马、小鹏为代表的主机厂在新一代车型中均将智能驾驶算力提升至500~1000Tops级别。
在这里插入图片描述

对于L3级别及以上的智能驾驶系统而言,传感器数量的增加及分辨率的提升带来海量数据处理需求,算法模型的复杂程度亦大幅提升,驱动算力需求迅速增长。软硬件解耦的智能驾驶芯片是实现算法持续迭代升级的基础,以英伟达为代表的开放算法生态的芯片更受主机厂青睐。
在这里插入图片描述

以高通、英伟达为代表的国际芯片巨头在大算力芯片上具备绝对领先优势。以地平线、海思、黑芝麻智能、芯驰科技为代表的本土自主芯片厂商上发力追赶,在产品力上跻身领先梯队。芯片的绝对算力高低固然重要,但对于主机厂开发量产车型而言,芯片选择需兼顾算力、成本、功耗、易用性、同构性等多重因素。因此,如何在有限算力下帮助客户算法软件最高效地运行是衡量芯片厂商竞争力的核心标准。
在这里插入图片描述

大算力芯片的上车应用离不开车载计算平台的支撑。为支持并兼容L3及以上智能驾驶系统数量与类型繁多的传感器与执行器需求,车载计算平台多采用异构芯片硬件方案,以满足系统接口与算力需求。异构芯片硬件方案包括采用单板卡集成多种架构芯片的方案,以及采用同时集成多个架构单元的SoC芯片的方案。车载计算平台可通过提高单芯片算力、复制堆叠计算单元等方式实现算力的弹性拓展。
在这里插入图片描述

由于车载计算芯片仍在不断发展中,车载计算平台的异构芯片形态将长期存在。相较传统ECU,车载计算平台的复杂度呈数倍提升,面临功耗、散热、电磁、质量等多重挑战。由于能效比、工艺制程以及芯片堆叠带来的功耗、散热与成本挑战,车载计算平台算力存在物理上限。
超星未来核心产品包括:NOVA-Box 自动驾驶计算平台、NOVA-X 自动模型优化工具链、NOVA-3D点云算法优化加速与部署工具、NOVA-IP面向自动驾驶域的定制加速IP库、NOVA-Drive高可靠性中间件、NOVA-Auto自动驾驶框架、NOVA-AI自动驾驶核心算法模型等。
在这里插入图片描述

超星未来已与赛灵思、德赛西威、英恒科技、宇通客车、陕汽商用车、普渡机器人、奇瑞、文远知行等一线汽车供应商、主机厂、机器人和自动驾驶公司建立战略合作关系。
在这里插入图片描述

根据信息处理的抽象程度,多传感器信息融合可分为数据级、特征级、决策级三种解决方案。通过传感器芯片化与多传感器信息特征融合解决方案的结合,在传感器端完成原始数据的特征提取,在车载计算平台完成特征数据融合、识别判断和决策,可有效缓解车载计算平台计算负载。
在这里插入图片描述
随着车规级芯片制程的逐步突破,受限于车端物理环境,芯片制程将到达极限,摩尔定律下单芯片算力增长难以持续,车端算力终将到达物理上限。为满足智能座舱与智能驾驶的持续深化发展,智能汽车算力供给模式将走向“云-网-边-端”融合计算,实现算力供给的弹性拓展。
在这里插入图片描述

通过云端、通信网端、边端、车端的连接融合,可建立一个充满计算和通信能力的环境,形成智能汽车算力服务网络。新的计算架构下,5G+V2X提供更高效的通信管道,云端、边端、车端之间可实现近实时的数据交互。智能汽车与边缘计算节点实现协同感知和计算任务协同,具备低时延、本地数据脱敏处理等优势,车载计算平台聚焦现场级计算需求,云计算则聚焦非实时的大体量数据分析与算法训练。

参考链接
https://mp.weixin.qq.com/s/OXId-6qJ_IUtcQGddIV7-Q
https://xueqiu.com/9508834377/207369912

最后

以上就是苗条白猫为你收集整理的智能驾驶计算平台算力技术的全部内容,希望文章能够帮你解决智能驾驶计算平台算力技术所遇到的程序开发问题。

如果觉得靠谱客网站的内容还不错,欢迎将靠谱客网站推荐给程序员好友。

本图文内容来源于网友提供,作为学习参考使用,或来自网络收集整理,版权属于原作者所有。
点赞(188)

评论列表共有 0 条评论

立即
投稿
返回
顶部