概述
【控制】多智能体系统总结。1. 系统模型。2.控制目标。3.模型转换。
【控制】多智能体系统总结。4.控制协议。
【控制】多智能体系统总结。5.系统合并。
文章目录
- 1. 系统模型
- 1.1 一阶一维系统
- 1.2 一阶二维系统
- 1.3 二阶一维系统
- 1.4 二阶二维系统
- 2. 控制目标
- 2.1 一阶一维系统
- 2.2 一阶二维系统
- 2.3 二阶一维系统
- 2.4 二阶二维系统
- 3. 模型转换
- 3.1 一阶一维系统
- 3.2 一阶二维系统
- 3.2.1 方式一
- 3.2.2 方式二
- 3.3 二阶一维系统
- 3.3.1 方式一
- 3.3.2 方式二
- 3.4 二阶二维系统
- 3.4.1 方式一
- 3.4.2 方式二
1. 系统模型
1.1 一阶一维系统
{ p ˙ i = u i ( ) left{begin{aligned} dot{p}_i & = u_i \ end{aligned}right. tag{} {p˙i=ui()
1.2 一阶二维系统
{ p ˙ i = v i v ˙ i = u i ( ) left{begin{aligned} dot{p}_i & = v_i \ dot{v}_i & = u_i \ end{aligned}right. tag{} {p˙iv˙i=vi=ui()
1.3 二阶一维系统
{ p ˙ i x = u i x p ˙ i y = u i y ( ) left{begin{aligned} dot{p}_i^x & = u_i^x \ dot{p}_i^y & = u_i^y \ end{aligned}right. tag{} {p˙ixp˙iy=uix=uiy()
1.4 二阶二维系统
{ p ˙ i x = v i x p ˙ i y = v i y v ˙ i x = u i x v ˙ i y = u i y ( ) left{begin{aligned} dot{p}_i^x & = v_i^x \ dot{p}_i^y & = v_i^y \ dot{v}_i^x & = u_i^x \ dot{v}_i^y & = u_i^y \ end{aligned}right. tag{} ⎩⎪⎪⎪⎪⎨⎪⎪⎪⎪⎧p˙ixp˙iyv˙ixv˙iy=vix=viy=uix=uiy()
2. 控制目标
控制目标为所有智能体的最终状态
2.1 一阶一维系统
lim t → ∞ ∥ p j − p i ∥ = 0 ( ) begin{aligned} lim_{trightarrow infty} |p_j - p_i| &= 0 \ end{aligned} tag{} t→∞lim∥pj−pi∥=0()
2.2 一阶二维系统
lim t → ∞ ∥ p j x − p i x ∥ = 0 lim t → ∞ ∥ p j y − p i y ∥ = 0 ( ) begin{aligned} lim_{trightarrow infty} |p_j^x - p_i^x| &= 0 \ lim_{trightarrow infty} |p_j^y - p_i^y| &= 0 \ end{aligned} tag{} t→∞lim∥pjx−pix∥t→∞lim∥pjy−piy∥=0=0()
2.3 二阶一维系统
lim t → ∞ ∥ p j − p i ∥ = 0 lim t → ∞ ∥ v j − v i ∥ = 0 ( ) begin{aligned} lim_{trightarrow infty} |p_j - p_i| &= 0 \ lim_{trightarrow infty} |v_j - v_i| &= 0 \ end{aligned} tag{} t→∞lim∥pj−pi∥t→∞lim∥vj−vi∥=0=0()
2.4 二阶二维系统
lim t → ∞ ∥ p j x − p i x ∥ = 0 lim t → ∞ ∥ p j y − p i y ∥ = 0 lim t → ∞ ∥ v j x − v i x ∥ = 0 lim t → ∞ ∥ v j y − v i y ∥ = 0 ( ) begin{aligned} lim_{trightarrow infty} |p_j^x - p_i^x| &= 0 \ lim_{trightarrow infty} |p_j^y - p_i^y| &= 0 \ lim_{trightarrow infty} |v_j^x - v_i^x| &= 0 \ lim_{trightarrow infty} |v_j^y - v_i^y| &= 0 \ end{aligned} tag{} t→∞lim∥pjx−pix∥t→∞lim∥pjy−piy∥t→∞lim∥vjx−vix∥t→∞lim∥vjy−viy∥=0=0=0=0()
3. 模型转换
3.1 一阶一维系统
单个智能体存在的系统模型为
[
p
˙
i
]
=
[
0
]
[
p
i
]
+
[
1
]
[
u
i
]
=
0
⋅
X
+
1
⋅
U
(
)
begin{aligned} left[begin{matrix} dot{p}_i \ end{matrix}right] &= left[begin{matrix} 0 \ end{matrix}right] left[begin{matrix} p_i \ end{matrix}right] + left[begin{matrix} 1 \ end{matrix}right] left[begin{matrix} u_i \ end{matrix}right] \ &= 0 cdot X + 1 cdot U end{aligned} tag{}
[p˙i]=[0][pi]+[1][ui]=0⋅X+1⋅U()
多个智能体存在的系统模型为
[
p
˙
1
p
˙
2
p
˙
3
]
=
[
0
0
0
0
0
0
0
0
0
]
[
p
1
p
2
p
3
]
+
[
1
0
0
0
1
0
0
0
1
]
[
u
1
u
2
u
3
]
=
0
N
×
N
⋅
X
+
I
N
⋅
U
(
)
begin{aligned} left[begin{matrix} dot{p}_1 \ dot{p}_2 \ dot{p}_3 \ end{matrix}right] &= left[begin{matrix} 0 & 0 & 0 \ 0 & 0 & 0 \ 0 & 0 & 0 \ end{matrix}right] left[begin{matrix} p_1 \ p_2 \ p_3 \ end{matrix}right] + left[begin{matrix} 1 & 0 & 0 \ 0 & 1 & 0 \ 0 & 0 & 1 \ end{matrix}right] left[begin{matrix} u_1 \ u_2 \ u_3 \ end{matrix}right] \ &= red{0_{N times N} cdot X + I_N cdot U} end{aligned} tag{}
⎣⎡p˙1p˙2p˙3⎦⎤=⎣⎡000000000⎦⎤⎣⎡p1p2p3⎦⎤+⎣⎡100010001⎦⎤⎣⎡u1u2u3⎦⎤=0N×N⋅X+IN⋅U()
3.2 一阶二维系统
单个智能体存在的系统模型为
[
p
˙
i
x
p
˙
i
y
]
=
[
0
0
0
0
]
[
p
i
x
p
i
y
]
+
[
1
0
0
1
]
[
u
i
x
u
i
y
]
=
0
2
×
2
⋅
X
+
I
2
⋅
U
(
)
begin{aligned} left[begin{matrix} dot{p}_i^x \ dot{p}_i^y \ end{matrix}right] &= left[begin{matrix} 0 & 0 \ 0 & 0 \ end{matrix}right] left[begin{matrix} p_i^x \ p_i^y \ end{matrix}right] + left[begin{matrix} 1 & 0 \ 0 & 1 \ end{matrix}right] left[begin{matrix} u_i^x \ u_i^y \ end{matrix}right] \ &= 0_{2times 2} cdot X + I_2 cdot U end{aligned} tag{}
[p˙ixp˙iy]=[0000][pixpiy]+[1001][uixuiy]=02×2⋅X+I2⋅U()
3.2.1 方式一
多个智能体存在的系统模型为
[
p
˙
1
x
p
˙
1
y
p
˙
2
x
p
˙
2
y
p
˙
3
x
p
˙
3
y
]
=
[
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
]
[
p
1
x
p
1
y
p
2
x
p
2
y
p
3
x
p
3
y
]
+
[
1
0
0
0
0
0
0
1
0
0
0
0
0
0
1
0
0
0
0
0
0
1
0
0
0
0
0
0
1
0
0
0
0
0
0
1
]
[
u
1
x
u
1
y
u
2
x
u
2
y
u
3
x
u
3
y
]
=
0
2
N
×
2
N
⋅
X
+
I
2
N
⋅
U
(
)
begin{aligned} left[begin{matrix} dot{p}_1^x \ dot{p}_1^y \ dot{p}_2^x \ dot{p}_2^y \ dot{p}_3^x \ dot{p}_3^y \ end{matrix}right] &= left[begin{matrix} 0 & 0 & 0 & 0 & 0 & 0 \ 0 & 0 & 0 & 0 & 0 & 0 \ 0 & 0 & 0 & 0 & 0 & 0 \ 0 & 0 & 0 & 0 & 0 & 0 \ 0 & 0 & 0 & 0 & 0 & 0 \ 0 & 0 & 0 & 0 & 0 & 0 \ end{matrix}right] left[begin{matrix} p_1^x \ p_1^y \ p_2^x \ p_2^y \ p_3^x \ p_3^y \ end{matrix}right] + left[begin{matrix} 1 & 0 & 0 & 0 & 0 & 0 \ 0 & 1 & 0 & 0 & 0 & 0 \ 0 & 0 & 1 & 0 & 0 & 0 \ 0 & 0 & 0 & 1 & 0 & 0 \ 0 & 0 & 0 & 0 & 1 & 0 \ 0 & 0 & 0 & 0 & 0 & 1 \ end{matrix}right] left[begin{matrix} u_1^x \ u_1^y \ u_2^x \ u_2^y \ u_3^x \ u_3^y \ end{matrix}right] \ &= red{0_{2N times 2N} cdot X + I_{2N} cdot U} end{aligned} tag{}
⎣⎢⎢⎢⎢⎢⎢⎡p˙1xp˙1yp˙2xp˙2yp˙3xp˙3y⎦⎥⎥⎥⎥⎥⎥⎤=⎣⎢⎢⎢⎢⎢⎢⎡000000000000000000000000000000000000⎦⎥⎥⎥⎥⎥⎥⎤⎣⎢⎢⎢⎢⎢⎢⎡p1xp1yp2xp2yp3xp3y⎦⎥⎥⎥⎥⎥⎥⎤+⎣⎢⎢⎢⎢⎢⎢⎡100000010000001000000100000010000001⎦⎥⎥⎥⎥⎥⎥⎤⎣⎢⎢⎢⎢⎢⎢⎡u1xu1yu2xu2yu3xu3y⎦⎥⎥⎥⎥⎥⎥⎤=02N×2N⋅X+I2N⋅U()
3.2.2 方式二
多个智能体存在的系统模型为
[
p
˙
1
x
p
˙
2
x
p
˙
3
x
p
˙
1
y
p
˙
2
y
p
˙
3
y
]
=
[
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
]
[
p
1
x
p
2
x
p
3
x
p
1
y
p
2
y
p
3
y
]
+
[
1
0
0
0
0
0
0
1
0
0
0
0
0
0
1
0
0
0
0
0
0
1
0
0
0
0
0
0
1
0
0
0
0
0
0
1
]
[
u
1
x
u
2
x
u
3
x
u
1
y
u
2
y
u
3
y
]
=
0
2
N
×
2
N
⋅
X
+
I
2
N
⋅
U
(
)
begin{aligned} left[begin{matrix} dot{p}_1^x \ dot{p}_2^x \ dot{p}_3^x \ dot{p}_1^y \ dot{p}_2^y \ dot{p}_3^y \ end{matrix}right] &= left[begin{matrix} 0 & 0 & 0 & 0 & 0 & 0 \ 0 & 0 & 0 & 0 & 0 & 0 \ 0 & 0 & 0 & 0 & 0 & 0 \ 0 & 0 & 0 & 0 & 0 & 0 \ 0 & 0 & 0 & 0 & 0 & 0 \ 0 & 0 & 0 & 0 & 0 & 0 \ end{matrix}right] left[begin{matrix} p_1^x \ p_2^x \ p_3^x \ p_1^y \ p_2^y \ p_3^y \ end{matrix}right] + left[begin{matrix} 1 & 0 & 0 & 0 & 0 & 0 \ 0 & 1 & 0 & 0 & 0 & 0 \ 0 & 0 & 1 & 0 & 0 & 0 \ 0 & 0 & 0 & 1 & 0 & 0 \ 0 & 0 & 0 & 0 & 1 & 0 \ 0 & 0 & 0 & 0 & 0 & 1 \ end{matrix}right] left[begin{matrix} u_1^x \ u_2^x \ u_3^x \ u_1^y \ u_2^y \ u_3^y \ end{matrix}right] \ &= red{0_{2N times 2N} cdot X + I_{2N} cdot U} end{aligned} tag{}
⎣⎢⎢⎢⎢⎢⎢⎡p˙1xp˙2xp˙3xp˙1yp˙2yp˙3y⎦⎥⎥⎥⎥⎥⎥⎤=⎣⎢⎢⎢⎢⎢⎢⎡000000000000000000000000000000000000⎦⎥⎥⎥⎥⎥⎥⎤⎣⎢⎢⎢⎢⎢⎢⎡p1xp2xp3xp1yp2yp3y⎦⎥⎥⎥⎥⎥⎥⎤+⎣⎢⎢⎢⎢⎢⎢⎡100000010000001000000100000010000001⎦⎥⎥⎥⎥⎥⎥⎤⎣⎢⎢⎢⎢⎢⎢⎡u1xu2xu3xu1yu2yu3y⎦⎥⎥⎥⎥⎥⎥⎤=02N×2N⋅X+I2N⋅U()
3.3 二阶一维系统
单个智能体存在的系统模型为
[
p
˙
i
v
˙
i
]
=
[
0
1
0
0
]
[
p
i
v
i
]
+
[
0
1
]
[
u
i
]
(
)
begin{aligned} left[begin{matrix} dot{p}_i \ dot{v}_i \ end{matrix}right] &= left[begin{matrix} 0 & 1 \ 0 & 0 \ end{matrix}right] left[begin{matrix} p_i \ v_i \ end{matrix}right] + left[begin{matrix} 0 \ 1 \ end{matrix}right] left[begin{matrix} u_i \ end{matrix}right] end{aligned} tag{}
[p˙iv˙i]=[0010][pivi]+[01][ui]()
3.3.1 方式一
多个智能体存在的系统模型为
[
p
˙
1
v
˙
1
p
˙
2
v
˙
2
p
˙
3
v
˙
3
]
=
[
0
1
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
]
[
p
1
v
1
p
2
v
2
p
3
v
3
]
+
[
0
0
0
1
0
0
0
0
0
0
1
0
0
0
0
0
0
1
]
[
u
1
u
2
u
3
]
=
I
N
⊗
[
0
1
0
0
]
⋅
X
+
I
N
⊗
[
0
1
]
⋅
U
(
)
begin{aligned} left[begin{matrix} dot{p}_1 \ dot{v}_1 \ dot{p}_2 \ dot{v}_2 \ dot{p}_3 \ dot{v}_3 \ end{matrix}right] &= left[begin{matrix} 0 & 1 & 0 & 0 & 0 & 0 \ 0 & 0 & 0 & 0 & 0 & 0 \ 0 & 0 & 0 & 1 & 0 & 0 \ 0 & 0 & 0 & 0 & 0 & 0 \ 0 & 0 & 0 & 0 & 0 & 1 \ 0 & 0 & 0 & 0 & 0 & 0 \ end{matrix}right] left[begin{matrix} p_1 \ v_1 \ p_2 \ v_2 \ p_3 \ v_3 \ end{matrix}right] + left[begin{matrix} 0 & 0 & 0 \ 1 & 0 & 0 \ 0 & 0 & 0 \ 0 & 1 & 0 \ 0 & 0 & 0 \ 0 & 0 & 1 \ end{matrix}right] left[begin{matrix} u_1 \ u_2 \ u_3 \ end{matrix}right] \ &= red{ I_N otimes left[begin{matrix} 0 & 1 \ 0 & 0 \ end{matrix}right] cdot X + I_N otimes left[begin{matrix} 0 \ 1 \ end{matrix}right] cdot U} end{aligned} tag{}
⎣⎢⎢⎢⎢⎢⎢⎡p˙1v˙1p˙2v˙2p˙3v˙3⎦⎥⎥⎥⎥⎥⎥⎤=⎣⎢⎢⎢⎢⎢⎢⎡000000100000000000001000000000000010⎦⎥⎥⎥⎥⎥⎥⎤⎣⎢⎢⎢⎢⎢⎢⎡p1v1p2v2p3v3⎦⎥⎥⎥⎥⎥⎥⎤+⎣⎢⎢⎢⎢⎢⎢⎡010000000100000001⎦⎥⎥⎥⎥⎥⎥⎤⎣⎡u1u2u3⎦⎤=IN⊗[0010]⋅X+IN⊗[01]⋅U()
3.3.2 方式二
多个智能体存在的系统模型为
[
p
˙
1
p
˙
2
p
˙
3
v
˙
1
v
˙
2
v
˙
3
]
=
[
0
0
0
1
0
0
0
0
0
0
1
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
]
[
p
1
p
2
p
3
v
1
v
2
v
3
]
+
[
0
0
0
0
0
0
0
0
0
1
0
0
0
1
0
0
0
1
]
[
u
1
u
2
u
3
]
=
[
0
N
×
N
I
N
0
N
×
N
0
N
×
N
]
⋅
X
+
[
0
N
×
N
I
N
]
⋅
U
=
[
0
1
0
0
]
⊗
I
N
⋅
X
+
[
0
1
]
⊗
I
N
⋅
U
(
)
begin{aligned} left[begin{matrix} dot{p}_1 \ dot{p}_2 \ dot{p}_3 \ dot{v}_1 \ dot{v}_2 \ dot{v}_3 \ end{matrix}right] &= left[begin{matrix} 0 & 0 & 0 & 1 & 0 & 0 \ 0 & 0 & 0 & 0 & 1 & 0 \ 0 & 0 & 0 & 0 & 0 & 1 \ 0 & 0 & 0 & 0 & 0 & 0 \ 0 & 0 & 0 & 0 & 0 & 0 \ 0 & 0 & 0 & 0 & 0 & 0 \ end{matrix}right] left[begin{matrix} p_1 \ p_2 \ p_3 \ v_1 \ v_2 \ v_3 \ end{matrix}right] + left[begin{matrix} 0 & 0 & 0 \ 0 & 0 & 0 \ 0 & 0 & 0 \ 1 & 0 & 0 \ 0 & 1 & 0 \ 0 & 0 & 1 \ end{matrix}right] left[begin{matrix} u_1 \ u_2 \ u_3 \ end{matrix}right] \ &= left[begin{matrix} 0_{Ntimes N} & I_N \ 0_{Ntimes N} & 0_{Ntimes N} \ end{matrix}right] cdot X + left[begin{matrix} 0_{Ntimes N} \ I_N \ end{matrix}right] cdot U \ &= red{ left[begin{matrix} 0 & 1 \ 0 & 0 \ end{matrix}right] otimes I_N cdot X + left[begin{matrix} 0 \ 1 \ end{matrix}right] otimes I_N cdot U} end{aligned} tag{}
⎣⎢⎢⎢⎢⎢⎢⎡p˙1p˙2p˙3v˙1v˙2v˙3⎦⎥⎥⎥⎥⎥⎥⎤=⎣⎢⎢⎢⎢⎢⎢⎡000000000000000000100000010000001000⎦⎥⎥⎥⎥⎥⎥⎤⎣⎢⎢⎢⎢⎢⎢⎡p1p2p3v1v2v3⎦⎥⎥⎥⎥⎥⎥⎤+⎣⎢⎢⎢⎢⎢⎢⎡000100000010000001⎦⎥⎥⎥⎥⎥⎥⎤⎣⎡u1u2u3⎦⎤=[0N×N0N×NIN0N×N]⋅X+[0N×NIN]⋅U=[0010]⊗IN⋅X+[01]⊗IN⋅U()
3.4 二阶二维系统
单个智能体存在的系统模型为
[ p ˙ i x p ˙ i y v ˙ i x v ˙ i y ] = [ 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 ] [ p i x p i y v i x v i y ] + [ 0 0 0 0 1 0 0 1 ] [ u i x u i y ] = a ⊗ I 2 ⋅ X i + b ⊗ I 2 ⋅ U i ( ) begin{aligned} left[begin{matrix} dot{p}^x_i \ dot{p}^y_i \ dot{v}^x_i \ dot{v}^y_i \ end{matrix}right] &= left[begin{matrix} 0 & 0 & 1 & 0 \ 0 & 0 & 0 & 1 \ 0 & 0 & 0 & 0 \ 0 & 0 & 0 & 0 \ end{matrix}right] left[begin{matrix} p_i^x \ p_i^y \ v_i^x \ v_i^y \ end{matrix}right] + left[begin{matrix} 0 & 0 \ 0 & 0 \ 1 & 0 \ 0 & 1 \ end{matrix}right] left[begin{matrix} u_i^x \ u_i^y \ end{matrix}right] \ &= a otimes I_2 cdot X_i + b otimes I_2 cdot U_i end{aligned} tag{} ⎣⎢⎢⎡p˙ixp˙iyv˙ixv˙iy⎦⎥⎥⎤=⎣⎢⎢⎡0000000010000100⎦⎥⎥⎤⎣⎢⎢⎡pixpiyvixviy⎦⎥⎥⎤+⎣⎢⎢⎡00100001⎦⎥⎥⎤[uixuiy]=a⊗I2⋅Xi+b⊗I2⋅Ui()
3.4.1 方式一
多个智能体存在的系统模型为
[
p
˙
1
x
p
˙
1
y
v
˙
1
x
v
˙
1
y
p
˙
2
x
p
˙
2
y
v
˙
2
x
v
˙
2
y
p
˙
3
x
p
˙
3
y
v
˙
3
x
v
˙
3
y
]
=
[
0
0
1
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
]
[
p
1
x
p
1
y
v
1
x
v
1
y
p
2
x
p
2
y
v
2
x
v
2
y
p
3
x
p
3
y
v
3
x
v
3
y
]
+
[
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
1
]
[
u
1
x
u
1
y
u
2
x
u
2
y
u
3
x
u
3
y
]
=
I
N
⊗
[
0
0
1
0
0
0
0
1
0
0
0
0
0
0
0
0
]
⋅
X
+
I
N
⊗
[
0
0
0
0
1
0
0
1
]
⋅
U
(
)
begin{aligned} left[begin{matrix} dot{p}_1^x \ dot{p}_1^y \ dot{v}_1^x \ dot{v}_1^y \ dot{p}_2^x \ dot{p}_2^y \ dot{v}_2^x \ dot{v}_2^y \ dot{p}_3^x \ dot{p}_3^y \ dot{v}_3^x \ dot{v}_3^y \ end{matrix}right] &= left[begin{matrix} 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \ 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \ 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \ end{matrix}right] left[begin{matrix} p_1^x \ p_1^y \ v_1^x \ v_1^y \ p_2^x \ p_2^y \ v_2^x \ v_2^y \ p_3^x \ p_3^y \ v_3^x \ v_3^y \ end{matrix}right] + left[begin{matrix} 0 & 0 & 0 & 0 & 0 & 0 \ 0 & 0 & 0 & 0 & 0 & 0 \ 1 & 0 & 0 & 0 & 0 & 0 \ 0 & 1 & 0 & 0 & 0 & 0 \ 0 & 0 & 0 & 0 & 0 & 0 \ 0 & 0 & 0 & 0 & 0 & 0 \ 0 & 0 & 1 & 0 & 0 & 0 \ 0 & 0 & 0 & 1 & 0 & 0 \ 0 & 0 & 0 & 0 & 0 & 0 \ 0 & 0 & 0 & 0 & 0 & 0 \ 0 & 0 & 0 & 0 & 1 & 0 \ 0 & 0 & 0 & 0 & 0 & 1 \ end{matrix}right] left[begin{matrix} u_1^x \ u_1^y \ u_2^x \ u_2^y \ u_3^x \ u_3^y \ end{matrix}right] \ &= red{ I_N otimes left[begin{matrix} 0 & 0 & 1 & 0 \ 0 & 0 & 0 & 1 \ 0 & 0 & 0 & 0 \ 0 & 0 & 0 & 0 \ end{matrix}right] cdot X + I_N otimes left[begin{matrix} 0 & 0 \ 0 & 0 \ 1 & 0 \ 0 & 1 \ end{matrix}right] cdot U} end{aligned} tag{}
⎣⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎡p˙1xp˙1yv˙1xv˙1yp˙2xp˙2yv˙2xv˙2yp˙3xp˙3yv˙3xv˙3y⎦⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎤=⎣⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎡000000000000000000000000100000000000010000000000000000000000000000000000000010000000000001000000000000000000000000000000000000001000000000000100⎦⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎤⎣⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎡p1xp1yv1xv1yp2xp2yv2xv2yp3xp3yv3xv3y⎦⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎤+⎣⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎡001000000000000100000000000000100000000000010000000000000010000000000001⎦⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎤⎣⎢⎢⎢⎢⎢⎢⎡u1xu1yu2xu2yu3xu3y⎦⎥⎥⎥⎥⎥⎥⎤=IN⊗⎣⎢⎢⎡0000000010000100⎦⎥⎥⎤⋅X+IN⊗⎣⎢⎢⎡00100001⎦⎥⎥⎤⋅U()
3.4.2 方式二
多个智能体存在的系统模型为
[
p
˙
1
x
p
˙
2
x
p
˙
3
x
p
˙
1
y
p
˙
2
y
p
˙
3
y
v
˙
1
x
v
˙
2
x
v
˙
3
x
v
˙
1
y
v
˙
2
y
v
˙
3
y
]
=
[
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
]
[
p
1
x
p
2
x
p
3
x
p
1
y
p
2
y
p
3
y
v
1
x
v
2
x
v
3
x
v
1
y
v
2
y
v
3
y
]
+
[
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
1
0
0
0
0
0
0
1
0
0
0
0
0
0
1
0
0
0
0
0
0
1
0
0
0
0
0
0
1
]
[
u
1
x
u
2
x
u
3
x
u
1
y
u
2
y
u
3
y
]
=
[
0
N
×
N
0
N
×
N
I
N
0
N
×
N
0
N
×
N
0
N
×
N
0
N
×
N
I
N
0
N
×
N
0
N
×
N
0
N
×
N
0
N
×
N
0
N
×
N
0
N
×
N
0
N
×
N
0
N
×
N
]
⋅
X
+
[
0
N
×
N
0
N
×
N
0
N
×
N
0
N
×
N
I
N
0
N
×
N
0
N
×
N
I
N
]
⋅
U
=
[
0
0
1
0
0
0
0
1
0
0
0
0
0
0
0
0
]
⊗
I
N
⋅
X
+
[
0
0
0
0
1
0
0
1
]
⊗
I
N
⋅
U
(
)
begin{aligned} left[begin{matrix} dot{p}_1^x \ dot{p}_2^x \ dot{p}_3^x \ dot{p}_1^y \ dot{p}_2^y \ dot{p}_3^y \ dot{v}_1^x \ dot{v}_2^x \ dot{v}_3^x \ dot{v}_1^y \ dot{v}_2^y \ dot{v}_3^y \ end{matrix}right] &= left[begin{matrix} 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \ end{matrix}right] left[begin{matrix} p_1^x \ p_2^x \ p_3^x \ p_1^y \ p_2^y \ p_3^y \ v_1^x \ v_2^x \ v_3^x \ v_1^y \ v_2^y \ v_3^y \ end{matrix}right] + left[begin{matrix} 0 & 0 & 0 & 0 & 0 & 0 \ 0 & 0 & 0 & 0 & 0 & 0 \ 0 & 0 & 0 & 0 & 0 & 0 \ 0 & 0 & 0 & 0 & 0 & 0 \ 0 & 0 & 0 & 0 & 0 & 0 \ 0 & 0 & 0 & 0 & 0 & 0 \ 1 & 0 & 0 & 0 & 0 & 0 \ 0 & 1 & 0 & 0 & 0 & 0 \ 0 & 0 & 1 & 0 & 0 & 0 \ 0 & 0 & 0 & 1 & 0 & 0 \ 0 & 0 & 0 & 0 & 1 & 0 \ 0 & 0 & 0 & 0 & 0 & 1 \ end{matrix}right] left[begin{matrix} u_1^x \ u_2^x \ u_3^x \ u_1^y \ u_2^y \ u_3^y \ end{matrix}right] \ &= left[begin{matrix} 0_{Ntimes N} & 0_{Ntimes N} & I_N & 0_{Ntimes N} \ 0_{Ntimes N} & 0_{Ntimes N} & 0_{Ntimes N} & I_{N} \ 0_{Ntimes N} & 0_{Ntimes N} & 0_{Ntimes N} & 0_{Ntimes N} \ 0_{Ntimes N} & 0_{Ntimes N} & 0_{Ntimes N} & 0_{Ntimes N} \ end{matrix}right] cdot X + left[begin{matrix} 0_{Ntimes N} & 0_{Ntimes N} \ 0_{Ntimes N} & 0_{Ntimes N} \ I_{N} & 0_{Ntimes N} \ 0_{Ntimes N} & I_{N} \ end{matrix}right] cdot U \ &= red{ left[begin{matrix} 0 & 0 & 1 & 0 \ 0 & 0 & 0 & 1 \ 0 & 0 & 0 & 0 \ 0 & 0 & 0 & 0 \ end{matrix}right] otimes I_N cdot X + left[begin{matrix} 0 & 0 \ 0 & 0 \ 1 & 0 \ 0 & 1 \ end{matrix}right] otimes I_N cdot U} end{aligned} tag{}
⎣⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎡p˙1xp˙2xp˙3xp˙1yp˙2yp˙3yv˙1xv˙2xv˙3xv˙1yv˙2yv˙3y⎦⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎤=⎣⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎡000000000000000000000000000000000000000000000000000000000000000000000000100000000000010000000000001000000000000100000000000010000000000001000000⎦⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎤⎣⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎡p1xp2xp3xp1yp2yp3yv1xv2xv3xv1yv2yv3y⎦⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎤+⎣⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎡000000100000000000010000000000001000000000000100000000000010000000000001⎦⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎤⎣⎢⎢⎢⎢⎢⎢⎡u1xu2xu3xu1yu2yu3y⎦⎥⎥⎥⎥⎥⎥⎤=⎣⎢⎢⎡0N×N0N×N0N×N0N×N0N×N0N×N0N×N0N×NIN0N×N0N×N0N×N0N×NIN0N×N0N×N⎦⎥⎥⎤⋅X+⎣⎢⎢⎡0N×N0N×NIN0N×N0N×N0N×N0N×NIN⎦⎥⎥⎤⋅U=⎣⎢⎢⎡0000000010000100⎦⎥⎥⎤⊗IN⋅X+⎣⎢⎢⎡00100001⎦⎥⎥⎤⊗IN⋅U()
最后
以上就是想人陪大树为你收集整理的【控制】多智能体系统总结。1. 系统模型。2.控制目标。3.模型转换。1. 系统模型2. 控制目标3. 模型转换的全部内容,希望文章能够帮你解决【控制】多智能体系统总结。1. 系统模型。2.控制目标。3.模型转换。1. 系统模型2. 控制目标3. 模型转换所遇到的程序开发问题。
如果觉得靠谱客网站的内容还不错,欢迎将靠谱客网站推荐给程序员好友。
发表评论 取消回复