我是靠谱客的博主 想人陪大树,最近开发中收集的这篇文章主要介绍【控制】多智能体系统总结。1. 系统模型。2.控制目标。3.模型转换。1. 系统模型2. 控制目标3. 模型转换,觉得挺不错的,现在分享给大家,希望可以做个参考。

概述

【控制】多智能体系统总结。1. 系统模型。2.控制目标。3.模型转换。
【控制】多智能体系统总结。4.控制协议。
【控制】多智能体系统总结。5.系统合并。

文章目录

  • 1. 系统模型
    • 1.1 一阶一维系统
    • 1.2 一阶二维系统
    • 1.3 二阶一维系统
    • 1.4 二阶二维系统
  • 2. 控制目标
    • 2.1 一阶一维系统
    • 2.2 一阶二维系统
    • 2.3 二阶一维系统
    • 2.4 二阶二维系统
  • 3. 模型转换
    • 3.1 一阶一维系统
    • 3.2 一阶二维系统
      • 3.2.1 方式一
      • 3.2.2 方式二
    • 3.3 二阶一维系统
      • 3.3.1 方式一
      • 3.3.2 方式二
    • 3.4 二阶二维系统
      • 3.4.1 方式一
      • 3.4.2 方式二

1. 系统模型

1.1 一阶一维系统

{ p ˙ i = u i ( ) left{begin{aligned} dot{p}_i & = u_i \ end{aligned}right. tag{} {p˙i=ui()

1.2 一阶二维系统

{ p ˙ i = v i v ˙ i = u i ( ) left{begin{aligned} dot{p}_i & = v_i \ dot{v}_i & = u_i \ end{aligned}right. tag{} {p˙iv˙i=vi=ui()

1.3 二阶一维系统

{ p ˙ i x = u i x p ˙ i y = u i y ( ) left{begin{aligned} dot{p}_i^x & = u_i^x \ dot{p}_i^y & = u_i^y \ end{aligned}right. tag{} {p˙ixp˙iy=uix=uiy()

1.4 二阶二维系统

{ p ˙ i x = v i x p ˙ i y = v i y v ˙ i x = u i x v ˙ i y = u i y ( ) left{begin{aligned} dot{p}_i^x & = v_i^x \ dot{p}_i^y & = v_i^y \ dot{v}_i^x & = u_i^x \ dot{v}_i^y & = u_i^y \ end{aligned}right. tag{} p˙ixp˙iyv˙ixv˙iy=vix=viy=uix=uiy()


2. 控制目标

控制目标为所有智能体的最终状态

2.1 一阶一维系统

lim ⁡ t → ∞ ∥ p j − p i ∥ = 0 ( ) begin{aligned} lim_{trightarrow infty} |p_j - p_i| &= 0 \ end{aligned} tag{} tlimpjpi=0()

2.2 一阶二维系统

lim ⁡ t → ∞ ∥ p j x − p i x ∥ = 0 lim ⁡ t → ∞ ∥ p j y − p i y ∥ = 0 ( ) begin{aligned} lim_{trightarrow infty} |p_j^x - p_i^x| &= 0 \ lim_{trightarrow infty} |p_j^y - p_i^y| &= 0 \ end{aligned} tag{} tlimpjxpixtlimpjypiy=0=0()

2.3 二阶一维系统

lim ⁡ t → ∞ ∥ p j − p i ∥ = 0 lim ⁡ t → ∞ ∥ v j − v i ∥ = 0 ( ) begin{aligned} lim_{trightarrow infty} |p_j - p_i| &= 0 \ lim_{trightarrow infty} |v_j - v_i| &= 0 \ end{aligned} tag{} tlimpjpitlimvjvi=0=0()

2.4 二阶二维系统

lim ⁡ t → ∞ ∥ p j x − p i x ∥ = 0 lim ⁡ t → ∞ ∥ p j y − p i y ∥ = 0 lim ⁡ t → ∞ ∥ v j x − v i x ∥ = 0 lim ⁡ t → ∞ ∥ v j y − v i y ∥ = 0 ( ) begin{aligned} lim_{trightarrow infty} |p_j^x - p_i^x| &= 0 \ lim_{trightarrow infty} |p_j^y - p_i^y| &= 0 \ lim_{trightarrow infty} |v_j^x - v_i^x| &= 0 \ lim_{trightarrow infty} |v_j^y - v_i^y| &= 0 \ end{aligned} tag{} tlimpjxpixtlimpjypiytlimvjxvixtlimvjyviy=0=0=0=0()


3. 模型转换

3.1 一阶一维系统

单个智能体存在的系统模型为
[ p ˙ i ] = [ 0 ] [ p i ] + [ 1 ] [ u i ] = 0 ⋅ X + 1 ⋅ U ( ) begin{aligned} left[begin{matrix} dot{p}_i \ end{matrix}right] &= left[begin{matrix} 0 \ end{matrix}right] left[begin{matrix} p_i \ end{matrix}right] + left[begin{matrix} 1 \ end{matrix}right] left[begin{matrix} u_i \ end{matrix}right] \ &= 0 cdot X + 1 cdot U end{aligned} tag{} [p˙i]=[0][pi]+[1][ui]=0X+1U()

多个智能体存在的系统模型为
[ p ˙ 1 p ˙ 2 p ˙ 3 ] = [ 0 0 0 0 0 0 0 0 0 ] [ p 1 p 2 p 3 ] + [ 1 0 0 0 1 0 0 0 1 ] [ u 1 u 2 u 3 ] = 0 N × N ⋅ X + I N ⋅ U ( ) begin{aligned} left[begin{matrix} dot{p}_1 \ dot{p}_2 \ dot{p}_3 \ end{matrix}right] &= left[begin{matrix} 0 & 0 & 0 \ 0 & 0 & 0 \ 0 & 0 & 0 \ end{matrix}right] left[begin{matrix} p_1 \ p_2 \ p_3 \ end{matrix}right] + left[begin{matrix} 1 & 0 & 0 \ 0 & 1 & 0 \ 0 & 0 & 1 \ end{matrix}right] left[begin{matrix} u_1 \ u_2 \ u_3 \ end{matrix}right] \ &= red{0_{N times N} cdot X + I_N cdot U} end{aligned} tag{} p˙1p˙2p˙3=000000000p1p2p3+100010001u1u2u3=0N×NX+INU()

3.2 一阶二维系统

单个智能体存在的系统模型为
[ p ˙ i x p ˙ i y ] = [ 0 0 0 0 ] [ p i x p i y ] + [ 1 0 0 1 ] [ u i x u i y ] = 0 2 × 2 ⋅ X + I 2 ⋅ U ( ) begin{aligned} left[begin{matrix} dot{p}_i^x \ dot{p}_i^y \ end{matrix}right] &= left[begin{matrix} 0 & 0 \ 0 & 0 \ end{matrix}right] left[begin{matrix} p_i^x \ p_i^y \ end{matrix}right] + left[begin{matrix} 1 & 0 \ 0 & 1 \ end{matrix}right] left[begin{matrix} u_i^x \ u_i^y \ end{matrix}right] \ &= 0_{2times 2} cdot X + I_2 cdot U end{aligned} tag{} [p˙ixp˙iy]=[0000][pixpiy]+[1001][uixuiy]=02×2X+I2U()

3.2.1 方式一

多个智能体存在的系统模型为
[ p ˙ 1 x p ˙ 1 y p ˙ 2 x p ˙ 2 y p ˙ 3 x p ˙ 3 y ] = [ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ] [ p 1 x p 1 y p 2 x p 2 y p 3 x p 3 y ] + [ 1 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 1 ] [ u 1 x u 1 y u 2 x u 2 y u 3 x u 3 y ] = 0 2 N × 2 N ⋅ X + I 2 N ⋅ U ( ) begin{aligned} left[begin{matrix} dot{p}_1^x \ dot{p}_1^y \ dot{p}_2^x \ dot{p}_2^y \ dot{p}_3^x \ dot{p}_3^y \ end{matrix}right] &= left[begin{matrix} 0 & 0 & 0 & 0 & 0 & 0 \ 0 & 0 & 0 & 0 & 0 & 0 \ 0 & 0 & 0 & 0 & 0 & 0 \ 0 & 0 & 0 & 0 & 0 & 0 \ 0 & 0 & 0 & 0 & 0 & 0 \ 0 & 0 & 0 & 0 & 0 & 0 \ end{matrix}right] left[begin{matrix} p_1^x \ p_1^y \ p_2^x \ p_2^y \ p_3^x \ p_3^y \ end{matrix}right] + left[begin{matrix} 1 & 0 & 0 & 0 & 0 & 0 \ 0 & 1 & 0 & 0 & 0 & 0 \ 0 & 0 & 1 & 0 & 0 & 0 \ 0 & 0 & 0 & 1 & 0 & 0 \ 0 & 0 & 0 & 0 & 1 & 0 \ 0 & 0 & 0 & 0 & 0 & 1 \ end{matrix}right] left[begin{matrix} u_1^x \ u_1^y \ u_2^x \ u_2^y \ u_3^x \ u_3^y \ end{matrix}right] \ &= red{0_{2N times 2N} cdot X + I_{2N} cdot U} end{aligned} tag{} p˙1xp˙1yp˙2xp˙2yp˙3xp˙3y=000000000000000000000000000000000000p1xp1yp2xp2yp3xp3y+100000010000001000000100000010000001u1xu1yu2xu2yu3xu3y=02N×2NX+I2NU()

3.2.2 方式二

多个智能体存在的系统模型为
[ p ˙ 1 x p ˙ 2 x p ˙ 3 x p ˙ 1 y p ˙ 2 y p ˙ 3 y ] = [ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ] [ p 1 x p 2 x p 3 x p 1 y p 2 y p 3 y ] + [ 1 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 1 ] [ u 1 x u 2 x u 3 x u 1 y u 2 y u 3 y ] = 0 2 N × 2 N ⋅ X + I 2 N ⋅ U ( ) begin{aligned} left[begin{matrix} dot{p}_1^x \ dot{p}_2^x \ dot{p}_3^x \ dot{p}_1^y \ dot{p}_2^y \ dot{p}_3^y \ end{matrix}right] &= left[begin{matrix} 0 & 0 & 0 & 0 & 0 & 0 \ 0 & 0 & 0 & 0 & 0 & 0 \ 0 & 0 & 0 & 0 & 0 & 0 \ 0 & 0 & 0 & 0 & 0 & 0 \ 0 & 0 & 0 & 0 & 0 & 0 \ 0 & 0 & 0 & 0 & 0 & 0 \ end{matrix}right] left[begin{matrix} p_1^x \ p_2^x \ p_3^x \ p_1^y \ p_2^y \ p_3^y \ end{matrix}right] + left[begin{matrix} 1 & 0 & 0 & 0 & 0 & 0 \ 0 & 1 & 0 & 0 & 0 & 0 \ 0 & 0 & 1 & 0 & 0 & 0 \ 0 & 0 & 0 & 1 & 0 & 0 \ 0 & 0 & 0 & 0 & 1 & 0 \ 0 & 0 & 0 & 0 & 0 & 1 \ end{matrix}right] left[begin{matrix} u_1^x \ u_2^x \ u_3^x \ u_1^y \ u_2^y \ u_3^y \ end{matrix}right] \ &= red{0_{2N times 2N} cdot X + I_{2N} cdot U} end{aligned} tag{} p˙1xp˙2xp˙3xp˙1yp˙2yp˙3y=000000000000000000000000000000000000p1xp2xp3xp1yp2yp3y+100000010000001000000100000010000001u1xu2xu3xu1yu2yu3y=02N×2NX+I2NU()

3.3 二阶一维系统

单个智能体存在的系统模型为
[ p ˙ i v ˙ i ] = [ 0 1 0 0 ] [ p i v i ] + [ 0 1 ] [ u i ] ( ) begin{aligned} left[begin{matrix} dot{p}_i \ dot{v}_i \ end{matrix}right] &= left[begin{matrix} 0 & 1 \ 0 & 0 \ end{matrix}right] left[begin{matrix} p_i \ v_i \ end{matrix}right] + left[begin{matrix} 0 \ 1 \ end{matrix}right] left[begin{matrix} u_i \ end{matrix}right] end{aligned} tag{} [p˙iv˙i]=[0010][pivi]+[01][ui]()

3.3.1 方式一

多个智能体存在的系统模型为
[ p ˙ 1 v ˙ 1 p ˙ 2 v ˙ 2 p ˙ 3 v ˙ 3 ] = [ 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 ] [ p 1 v 1 p 2 v 2 p 3 v 3 ] + [ 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 1 ] [ u 1 u 2 u 3 ] = I N ⊗ [ 0 1 0 0 ] ⋅ X + I N ⊗ [ 0 1 ] ⋅ U ( ) begin{aligned} left[begin{matrix} dot{p}_1 \ dot{v}_1 \ dot{p}_2 \ dot{v}_2 \ dot{p}_3 \ dot{v}_3 \ end{matrix}right] &= left[begin{matrix} 0 & 1 & 0 & 0 & 0 & 0 \ 0 & 0 & 0 & 0 & 0 & 0 \ 0 & 0 & 0 & 1 & 0 & 0 \ 0 & 0 & 0 & 0 & 0 & 0 \ 0 & 0 & 0 & 0 & 0 & 1 \ 0 & 0 & 0 & 0 & 0 & 0 \ end{matrix}right] left[begin{matrix} p_1 \ v_1 \ p_2 \ v_2 \ p_3 \ v_3 \ end{matrix}right] + left[begin{matrix} 0 & 0 & 0 \ 1 & 0 & 0 \ 0 & 0 & 0 \ 0 & 1 & 0 \ 0 & 0 & 0 \ 0 & 0 & 1 \ end{matrix}right] left[begin{matrix} u_1 \ u_2 \ u_3 \ end{matrix}right] \ &= red{ I_N otimes left[begin{matrix} 0 & 1 \ 0 & 0 \ end{matrix}right] cdot X + I_N otimes left[begin{matrix} 0 \ 1 \ end{matrix}right] cdot U} end{aligned} tag{} p˙1v˙1p˙2v˙2p˙3v˙3=000000100000000000001000000000000010p1v1p2v2p3v3+010000000100000001u1u2u3=IN[0010]X+IN[01]U()

3.3.2 方式二

多个智能体存在的系统模型为
[ p ˙ 1 p ˙ 2 p ˙ 3 v ˙ 1 v ˙ 2 v ˙ 3 ] = [ 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ] [ p 1 p 2 p 3 v 1 v 2 v 3 ] + [ 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 1 ] [ u 1 u 2 u 3 ] = [ 0 N × N I N 0 N × N 0 N × N ] ⋅ X + [ 0 N × N I N ] ⋅ U = [ 0 1 0 0 ] ⊗ I N ⋅ X + [ 0 1 ] ⊗ I N ⋅ U ( ) begin{aligned} left[begin{matrix} dot{p}_1 \ dot{p}_2 \ dot{p}_3 \ dot{v}_1 \ dot{v}_2 \ dot{v}_3 \ end{matrix}right] &= left[begin{matrix} 0 & 0 & 0 & 1 & 0 & 0 \ 0 & 0 & 0 & 0 & 1 & 0 \ 0 & 0 & 0 & 0 & 0 & 1 \ 0 & 0 & 0 & 0 & 0 & 0 \ 0 & 0 & 0 & 0 & 0 & 0 \ 0 & 0 & 0 & 0 & 0 & 0 \ end{matrix}right] left[begin{matrix} p_1 \ p_2 \ p_3 \ v_1 \ v_2 \ v_3 \ end{matrix}right] + left[begin{matrix} 0 & 0 & 0 \ 0 & 0 & 0 \ 0 & 0 & 0 \ 1 & 0 & 0 \ 0 & 1 & 0 \ 0 & 0 & 1 \ end{matrix}right] left[begin{matrix} u_1 \ u_2 \ u_3 \ end{matrix}right] \ &= left[begin{matrix} 0_{Ntimes N} & I_N \ 0_{Ntimes N} & 0_{Ntimes N} \ end{matrix}right] cdot X + left[begin{matrix} 0_{Ntimes N} \ I_N \ end{matrix}right] cdot U \ &= red{ left[begin{matrix} 0 & 1 \ 0 & 0 \ end{matrix}right] otimes I_N cdot X + left[begin{matrix} 0 \ 1 \ end{matrix}right] otimes I_N cdot U} end{aligned} tag{} p˙1p˙2p˙3v˙1v˙2v˙3=000000000000000000100000010000001000p1p2p3v1v2v3+000100000010000001u1u2u3=[0N×N0N×NIN0N×N]X+[0N×NIN]U=[0010]INX+[01]INU()

3.4 二阶二维系统

单个智能体存在的系统模型为

[ p ˙ i x p ˙ i y v ˙ i x v ˙ i y ] = [ 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 ] [ p i x p i y v i x v i y ] + [ 0 0 0 0 1 0 0 1 ] [ u i x u i y ] = a ⊗ I 2 ⋅ X i + b ⊗ I 2 ⋅ U i ( ) begin{aligned} left[begin{matrix} dot{p}^x_i \ dot{p}^y_i \ dot{v}^x_i \ dot{v}^y_i \ end{matrix}right] &= left[begin{matrix} 0 & 0 & 1 & 0 \ 0 & 0 & 0 & 1 \ 0 & 0 & 0 & 0 \ 0 & 0 & 0 & 0 \ end{matrix}right] left[begin{matrix} p_i^x \ p_i^y \ v_i^x \ v_i^y \ end{matrix}right] + left[begin{matrix} 0 & 0 \ 0 & 0 \ 1 & 0 \ 0 & 1 \ end{matrix}right] left[begin{matrix} u_i^x \ u_i^y \ end{matrix}right] \ &= a otimes I_2 cdot X_i + b otimes I_2 cdot U_i end{aligned} tag{} p˙ixp˙iyv˙ixv˙iy=0000000010000100pixpiyvixviy+00100001[uixuiy]=aI2Xi+bI2Ui()

3.4.1 方式一

多个智能体存在的系统模型为
[ p ˙ 1 x p ˙ 1 y v ˙ 1 x v ˙ 1 y p ˙ 2 x p ˙ 2 y v ˙ 2 x v ˙ 2 y p ˙ 3 x p ˙ 3 y v ˙ 3 x v ˙ 3 y ] = [ 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ] [ p 1 x p 1 y v 1 x v 1 y p 2 x p 2 y v 2 x v 2 y p 3 x p 3 y v 3 x v 3 y ] + [ 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 ] [ u 1 x u 1 y u 2 x u 2 y u 3 x u 3 y ] = I N ⊗ [ 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 ] ⋅ X + I N ⊗ [ 0 0 0 0 1 0 0 1 ] ⋅ U ( ) begin{aligned} left[begin{matrix} dot{p}_1^x \ dot{p}_1^y \ dot{v}_1^x \ dot{v}_1^y \ dot{p}_2^x \ dot{p}_2^y \ dot{v}_2^x \ dot{v}_2^y \ dot{p}_3^x \ dot{p}_3^y \ dot{v}_3^x \ dot{v}_3^y \ end{matrix}right] &= left[begin{matrix} 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \ 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \ 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \ end{matrix}right] left[begin{matrix} p_1^x \ p_1^y \ v_1^x \ v_1^y \ p_2^x \ p_2^y \ v_2^x \ v_2^y \ p_3^x \ p_3^y \ v_3^x \ v_3^y \ end{matrix}right] + left[begin{matrix} 0 & 0 & 0 & 0 & 0 & 0 \ 0 & 0 & 0 & 0 & 0 & 0 \ 1 & 0 & 0 & 0 & 0 & 0 \ 0 & 1 & 0 & 0 & 0 & 0 \ 0 & 0 & 0 & 0 & 0 & 0 \ 0 & 0 & 0 & 0 & 0 & 0 \ 0 & 0 & 1 & 0 & 0 & 0 \ 0 & 0 & 0 & 1 & 0 & 0 \ 0 & 0 & 0 & 0 & 0 & 0 \ 0 & 0 & 0 & 0 & 0 & 0 \ 0 & 0 & 0 & 0 & 1 & 0 \ 0 & 0 & 0 & 0 & 0 & 1 \ end{matrix}right] left[begin{matrix} u_1^x \ u_1^y \ u_2^x \ u_2^y \ u_3^x \ u_3^y \ end{matrix}right] \ &= red{ I_N otimes left[begin{matrix} 0 & 0 & 1 & 0 \ 0 & 0 & 0 & 1 \ 0 & 0 & 0 & 0 \ 0 & 0 & 0 & 0 \ end{matrix}right] cdot X + I_N otimes left[begin{matrix} 0 & 0 \ 0 & 0 \ 1 & 0 \ 0 & 1 \ end{matrix}right] cdot U} end{aligned} tag{} p˙1xp˙1yv˙1xv˙1yp˙2xp˙2yv˙2xv˙2yp˙3xp˙3yv˙3xv˙3y=000000000000000000000000100000000000010000000000000000000000000000000000000010000000000001000000000000000000000000000000000000001000000000000100p1xp1yv1xv1yp2xp2yv2xv2yp3xp3yv3xv3y+001000000000000100000000000000100000000000010000000000000010000000000001u1xu1yu2xu2yu3xu3y=IN0000000010000100X+IN00100001U()

3.4.2 方式二

多个智能体存在的系统模型为
[ p ˙ 1 x p ˙ 2 x p ˙ 3 x p ˙ 1 y p ˙ 2 y p ˙ 3 y v ˙ 1 x v ˙ 2 x v ˙ 3 x v ˙ 1 y v ˙ 2 y v ˙ 3 y ] = [ 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ] [ p 1 x p 2 x p 3 x p 1 y p 2 y p 3 y v 1 x v 2 x v 3 x v 1 y v 2 y v 3 y ] + [ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 1 ] [ u 1 x u 2 x u 3 x u 1 y u 2 y u 3 y ] = [ 0 N × N 0 N × N I N 0 N × N 0 N × N 0 N × N 0 N × N I N 0 N × N 0 N × N 0 N × N 0 N × N 0 N × N 0 N × N 0 N × N 0 N × N ] ⋅ X + [ 0 N × N 0 N × N 0 N × N 0 N × N I N 0 N × N 0 N × N I N ] ⋅ U = [ 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 ] ⊗ I N ⋅ X + [ 0 0 0 0 1 0 0 1 ] ⊗ I N ⋅ U ( ) begin{aligned} left[begin{matrix} dot{p}_1^x \ dot{p}_2^x \ dot{p}_3^x \ dot{p}_1^y \ dot{p}_2^y \ dot{p}_3^y \ dot{v}_1^x \ dot{v}_2^x \ dot{v}_3^x \ dot{v}_1^y \ dot{v}_2^y \ dot{v}_3^y \ end{matrix}right] &= left[begin{matrix} 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \ end{matrix}right] left[begin{matrix} p_1^x \ p_2^x \ p_3^x \ p_1^y \ p_2^y \ p_3^y \ v_1^x \ v_2^x \ v_3^x \ v_1^y \ v_2^y \ v_3^y \ end{matrix}right] + left[begin{matrix} 0 & 0 & 0 & 0 & 0 & 0 \ 0 & 0 & 0 & 0 & 0 & 0 \ 0 & 0 & 0 & 0 & 0 & 0 \ 0 & 0 & 0 & 0 & 0 & 0 \ 0 & 0 & 0 & 0 & 0 & 0 \ 0 & 0 & 0 & 0 & 0 & 0 \ 1 & 0 & 0 & 0 & 0 & 0 \ 0 & 1 & 0 & 0 & 0 & 0 \ 0 & 0 & 1 & 0 & 0 & 0 \ 0 & 0 & 0 & 1 & 0 & 0 \ 0 & 0 & 0 & 0 & 1 & 0 \ 0 & 0 & 0 & 0 & 0 & 1 \ end{matrix}right] left[begin{matrix} u_1^x \ u_2^x \ u_3^x \ u_1^y \ u_2^y \ u_3^y \ end{matrix}right] \ &= left[begin{matrix} 0_{Ntimes N} & 0_{Ntimes N} & I_N & 0_{Ntimes N} \ 0_{Ntimes N} & 0_{Ntimes N} & 0_{Ntimes N} & I_{N} \ 0_{Ntimes N} & 0_{Ntimes N} & 0_{Ntimes N} & 0_{Ntimes N} \ 0_{Ntimes N} & 0_{Ntimes N} & 0_{Ntimes N} & 0_{Ntimes N} \ end{matrix}right] cdot X + left[begin{matrix} 0_{Ntimes N} & 0_{Ntimes N} \ 0_{Ntimes N} & 0_{Ntimes N} \ I_{N} & 0_{Ntimes N} \ 0_{Ntimes N} & I_{N} \ end{matrix}right] cdot U \ &= red{ left[begin{matrix} 0 & 0 & 1 & 0 \ 0 & 0 & 0 & 1 \ 0 & 0 & 0 & 0 \ 0 & 0 & 0 & 0 \ end{matrix}right] otimes I_N cdot X + left[begin{matrix} 0 & 0 \ 0 & 0 \ 1 & 0 \ 0 & 1 \ end{matrix}right] otimes I_N cdot U} end{aligned} tag{} p˙1xp˙2xp˙3xp˙1yp˙2yp˙3yv˙1xv˙2xv˙3xv˙1yv˙2yv˙3y=000000000000000000000000000000000000000000000000000000000000000000000000100000000000010000000000001000000000000100000000000010000000000001000000p1xp2xp3xp1yp2yp3yv1xv2xv3xv1yv2yv3y+000000100000000000010000000000001000000000000100000000000010000000000001u1xu2xu3xu1yu2yu3y=0N×N0N×N0N×N0N×N0N×N0N×N0N×N0N×NIN0N×N0N×N0N×N0N×NIN0N×N0N×NX+0N×N0N×NIN0N×N0N×N0N×N0N×NINU=0000000010000100INX+00100001INU()


最后

以上就是想人陪大树为你收集整理的【控制】多智能体系统总结。1. 系统模型。2.控制目标。3.模型转换。1. 系统模型2. 控制目标3. 模型转换的全部内容,希望文章能够帮你解决【控制】多智能体系统总结。1. 系统模型。2.控制目标。3.模型转换。1. 系统模型2. 控制目标3. 模型转换所遇到的程序开发问题。

如果觉得靠谱客网站的内容还不错,欢迎将靠谱客网站推荐给程序员好友。

本图文内容来源于网友提供,作为学习参考使用,或来自网络收集整理,版权属于原作者所有。
点赞(298)

评论列表共有 0 条评论

立即
投稿
返回
顶部