我是靠谱客的博主 缥缈小白菜,最近开发中收集的这篇文章主要介绍小白也能懂的因果推断科普,觉得挺不错的,现在分享给大家,希望可以做个参考。

概述

桔妹导读:在网约车行业中,有很多场景中都有着因果推断的相关应用,不仅仅是算法同学等在因果建模时运用到相关知识,很多业务同学在做相关决策时也经常用到。因此采用日常生活中常见的例子以及行业中的常见问题,对因果推断方向进行科普。

1. 

因果推断科普介绍

本文大概从两个方面展开介绍:

  • 因果性和相关性的定义以及区别。结合日常和业务上的例子有更直观的感受

  • 因果推断的常用方法介绍,以及在不同场景下如何应用

为什么需要研究因果性?在花小猪的很多场景中,我们是希望能够做决策,来得到我们想要的结果。比如通过对哪些乘客发券,对哪些司机发任务来提高平台的呼叫和tsh。如果只知道相关关系而不知道因果关系,很多场景下达不到我们想要的效果。下面举几个比较典型的混淆因果和相关关系的case来说明这几个问题。

这就是误用相关性的第一种CASE——因果颠倒。医院的例子中:院长认为:穿病号服会导致用户患重病,脱病号服会让用户治愈业务中的例子:小明同学认为,投入B补会降低城市成交率,降低B补会提高城市成交率。

  • 实际中的逻辑,其实大家很容易想到:是因果颠倒的。

  • 因为用户患重病,所以需要穿病号服住院治疗,因为用户治愈恢复健康,所以脱去病号服办理出院手续。

  • 城市供不应求,成交率不好,所以需要追加B补 拉动大盘的tsh。城市供大于求,成交率很好,无需要投入更多的B补。 

生活中大家会遇到一些很神奇的事情。

  • 比如有关注体育比赛的,是不是有这种感觉:每当我熬夜观看主队比赛的时候,主队就经常拉胯输球。经常看完后会骂:再看XX比赛我就是狗。有时候晚上睡过了错过比赛,醒来之后就是一场大胜。这时候作为一个合格的球迷:就会想到,能否拒绝观看主队比赛,提高主队胜率。

这其实是第二类错误,误用小样本巧合,当做因果性去做决策。事实上是:我今年没看NBA季后赛,还是湖人总冠军。之所以造成这样的感觉是因为:以比赛来说,我们喜欢的明星或者球队,会有代入感。我们的爱豆 那就是最好看的,我们的支持的球队那就是最强的。当带有这种心理,且熬夜起来看球,输球的时候,会放大这种输球的体验,让我们印象深刻,会记住这种时刻。

 

这是误用相关性的第三类错误。老板认为:冰淇淋销量是啤酒销量的因,通过促销冰淇淋来带动高利润的酒水。实际上的因果关系:因为夏天来了,天气变热了,冰淇淋的销量会大幅提升。同样,天气变热,喝酒撸串的人也变多了,所以啤酒也会销量提升。冬天来临时,老板低价冰淇淋卖破产了,啤酒销量也不见得能提升多少。这就是第三类错误:共同场外因素作用。

前面的三种类型一般会比较简单点,接下来的case是业务中比较常见的,也容易犯的错误。

  • 在北京地区发现,海淀区的孩子们普遍成绩较好,成绩比石景山区能高出100分呢?小明的家长想:古有孟母三迁,现在为了小明的未来,是否也可以从石景山搬去海淀,这样小明的高考成家就能够100+呢?

  • 运营同学在推广省钱卡,从数据中我们发现,购买省钱卡的人,前后两周对比,发现频次提升了30%以上。降低省钱卡的购卡门槛,让所有人都买省钱卡,这样大盘不就能做到40%的增长了吗?

以搬家为例

影响教育资源的有:教育资源更好(海淀区名校多,学区也多),搬家确实能够得到这个教育资源上优势。请好的家教,海淀区的家长们可能收入更高,能够请到质量更好、价格更贵的家教老师。这个并不是搬家就能够拿到的基因好,海淀区老师多,高知家庭也多,孩子们基因也好,这个也不是搬家就能够得到的。

以省钱卡为例

一种是沉默成本提频:花了9元,不赚回来不舒服 10%。一种是跨平台锁需求,竞对需求转化到我们平台。10%这种也是买卡导致的提频。还有一种是:乘客主动提频,也就是乘客因为工作等原因提前预知本周需要频繁打车出行,所以主动去买卡薅羊毛,这提频就不是买卡带来的20%。

2. 

如何定量的评估因果效应

上面两个例子的原因可能还有更多,且对应的数值也是拍的。在业务中,我们经常需要去回答这些问题:买卡对提频的准确数字有多少,才能帮助我们更好的设计sku 和策略。

  • 那如何能够定量的回答上述问题,且更好的指导业务同学科学决策呢?

  • 做实验

怎么科学的做决策?—— 随机实验

为什么要做实验?

相关性和因果性在实际例子中往往互相耦合,很多因素可能会影响我们的观察指标对于因果性,我们希望知道,如果只改变A因素,其他环境均没有变化的话,结果B会怎么变化。

什么是随机试验?

  • 随机实验是指对相似的样本,随机施加不同干预,观察结果。

  • 对搬家的例子,找到父母学历相同、家庭收入类似的多个家庭,随机选择一半家庭搬家去海淀,观察小孩的高考分数的差距

  • 对新冠疫苗,找到大量用户,随机一半接种疫苗(称为实验组),一半不接种疫苗(称为对照组),观察治愈率

最优选择要怎么做?—— 基于随机实验的因果推断

随机试验总结 

观测数据的因果推断

  • 举例:如何评估成交率/未成交量和用户留存的关系?

  • 直接计算未成交量和用户留存的相关性,会发现未成交量越高,留存越高。这是因为未成交量高的用户,发单量也一般比较高,对应高频用户本身留存率就较高。

  • 最直接的方法是在有同样未成交量的用户中,找到两组关键特征完全一致的样本。但随着特征增加这个方法显然不可行。

  • 方法:PSM IPTW等 (整体更加复杂且不一定置信,还是要更科学的做实验)

团队招聘

滴滴网约车前端技术团队负责网约车线上业务、运营业务的前端研发工作:包括滴滴出行WebApp及小程序、司机端及乘客端内前端业务、各类司乘拉新运营活动、各类内部管理系统、数据系统的前端研发、中间服务等研发工作。

滴滴网约车技术长期招聘资深前端工程师职位,欢迎有兴趣的小伙伴加入,可投递简历至 diditech@didiglobal.com,请将邮件主题请命名为「姓名-投递岗位-投递团队」。

如有疑问请联系HR

本文作者

延伸阅读

内容编辑 | Hokka 

联系我们 | DiDiTech@didiglobal.com


最后

以上就是缥缈小白菜为你收集整理的小白也能懂的因果推断科普的全部内容,希望文章能够帮你解决小白也能懂的因果推断科普所遇到的程序开发问题。

如果觉得靠谱客网站的内容还不错,欢迎将靠谱客网站推荐给程序员好友。

本图文内容来源于网友提供,作为学习参考使用,或来自网络收集整理,版权属于原作者所有。
点赞(61)

评论列表共有 0 条评论

立即
投稿
返回
顶部