我是靠谱客的博主 唠叨蜡烛,最近开发中收集的这篇文章主要介绍GitHub:超分辨率最全资料集锦前言Awesome-Super-Resolution,觉得挺不错的,现在分享给大家,希望可以做个参考。

概述

作者:ChaofWang | 编辑:Amusi

前言

本文将分享的内容是:超分辨率(Super Resolution,SR)最全资料合集,涵盖了SISR、VSR等。

在这里插入图片描述

一张图看懂超分辨率SR作用

注:文末附超分辨率SR微信交流群,欢迎加入学习

Awesome-Super-Resolution

项目作者:ChaofWang Star
数量:636 Commit
数量:120

https://github.com/ChaofWang/Awesome-Super-Resolution

该项目主要包含以下内容:

  • 最佳论文库/项目列表
  • 数据集
  • 论文:非深度学习方法、深度学习方法(2014-2020)
  • workshop论文
  • 综述

其中每个部分介绍的都非常详细,比如一个论文,会相应介绍其论文链接和相应的开源代码。

最佳论文库

这里算是致敬!github上其实有很多不错的超分辨率SR合集项目,比如:

Single-Image-Super-Resolution

Super-Resolution.Benckmark

Video-Super-Resolution

VideoSuperResolution

Awesome Super-Resolution

Awesome-LF-Image-SR

Awesome-Stereo-Image-SR

AI-video-enhance

最佳项目库

不少顶会上的SR论文都是基于下面的优秀开源项目所开发的,

repoFramework
EDSR-PyTorchPyTorch
Image-Super-ResolutionKeras
image-super-resolutionKeras
Super-Resolution-ZooMxNet
super-resolutionKeras
neural-enhanceTheano
srezTensorflow
waifu2xTorch
BasicSRPyTorch
super-resolutionPyTorch
VideoSuperResolutionTensorflow
video-super-resolutionPytorch
MMSRPyTorch

数据集

系统性整理了非常多的数据集,并都提供了下载链接,整理的很用心。比如Set14、BSD100和Urban100等。

NameUsageLinkComments
Set5Testdownloadjbhuang0604
SET14Testdownloadjbhuang0604
BSD100Testdownloadjbhuang0604
Urban100Testdownloadjbhuang0604
Manga109Testwebsite
SunHay80Testdownloadjbhuang0604
BSD300Train/Valdownload
BSD500Train/Valdownload
91-ImageTraindownloadYang
DIV2K2017Train/ValwebsiteNTIRE2017
Flickr2KTraindownload
Real SRTrain/ValwebsiteNTIRE2019
WaterlooTrainwebsite
VID4Testdownload4 videos
MCL-VTrainwebsite12 videos
GOPROTrain/Valwebsite33 videos, deblur
CelebATrainwebsiteHuman faces
SintelTrain/ValwebsiteOptical flow
FlyingChairsTrainwebsiteOptical flow
Vimeo-90kTrain/Testwebsite90k HQ videos
SR-RAWTrain/Testwebsiteraw sensor image dataset
W2STrain/TestarxivA Joint Denoising and Super-Resolution Dataset
PIPALTestECCV 2020Perceptual Image Quality Assessment dataset

论文:深度学习方法(2014-2020)

2014-2016

ModelPublishedCodeKeywords
SRCNNECCV14KerasKaiming
RAISRarXiv-Google, Pixel 3
ESPCNCVPR16KerasReal time/SISR/VideoSR
VDSRCVPR16MatlabDeep, Residual
DRCNCVPR16MatlabRecurrent

2017

ModelPublishedCodeKeywords
DRRNCVPR17Caffe, PyTorchRecurrent
LapSRNCVPR17MatlabHuber loss
IRCNNCVPR17Matlab
EDSRCVPR17PyTorchNTIRE17 Champion
BTSRNCVPR17-NTIRE17
SelNetCVPR17-NTIRE17
TLSRCVPR17-NTIRE17
SRGANCVPR17Tensorflow1st proposed GAN
VESPCNCVPR17-VideoSR
MemNetICCV17Caffe
SRDenseNetICCV17-, PyTorchDense
SPMCICCV17TensorflowVideoSR
EnhanceNetICCV17TensorFlowPerceptual Loss
PRSRICCV17TensorFlowan extension of PixelCNN
AffGANICLR17-

2018

ModelPublishedCodeKeywords
MS-LapSRNTPAMI18MatlabFast LapSRN
DCSCNarXivTensorflow
IDNCVPR18CaffeFast
DSRNCVPR18TensorFlowDual state,Recurrent
RDNCVPR18TorchDeep, BI-BD-DN
SRMDCVPR18MatlabDenoise/Deblur/SR
xUnitCVPR18PyTorchSpatial Activation Function
DBPNCVPR18PyTorchNTIRE18 Champion
WDSRCVPR18PyTorch,TensorFlowNTIRE18 Champion
ProSRNCVPR18PyTorchNTIRE18
ZSSRCVPR18TensorflowZero-shot
FRVSRCVPR18PDFVideoSR
DUFCVPR18TensorflowVideoSR
TDANarXiv-VideoSR,Deformable Align
SFTGANCVPR18PyTorch
CARNECCV18PyTorchLightweight
RCANECCV18PyTorchDeep, BI-BD-DN
MSRNECCV18PyTorch
SRFeatECCV18TensorflowGAN
TSRNECCV18Pytorch
ESRGANECCV18PyTorchPRIM18 region 3 Champion
EPSRECCV18PyTorchPRIM18 region 1 Champion
PESRECCV18PyTorchECCV18 workshop
FEQEECCV18TensorflowFast
NLRNNIPS18TensorflowNon-local, Recurrent
SRCliqueNetNIPS18-Wavelet
CBDNetarXivMatlabBlind-denoise
TecoGANarXivTensorflowVideoSR GAN

2019

ModelPublishedCodeKeywords
RBPNCVPR19PyTorchVideoSR
SRFBNCVPR19PyTorchFeedback
AdaFMCVPR19PyTorchAdaptive Feature Modification Layers
MoreMNASarXiv-Lightweight,NAS
FALSRarXivTensorFlowLightweight,NAS
Meta-SRCVPR19PyTorchArbitrary Magnification
AWSRNarXivPyTorchLightweight
OISRCVPR19PyTorchODE-inspired Network
DPSRCVPR19PyTorch
DNICVPR19PyTorch
MAANetarXivMulti-view Aware Attention
RNANICLR19PyTorchResidual Non-local Attention
FSTRNCVPR19-VideoSR, fast spatio-temporal residual block
MsDNNarXivTensorFlowNTIRE19 real SR 21th place
SANCVPR19PytorchSecond-order Attention,cvpr19 oral
EDVRCVPRW19PytorchVideo, NTIRE19 video restoration and enhancement champions
Ensemble for VSRCVPRW19-VideoSR, NTIRE19 video SR 2nd place
TENetarXivPytorcha Joint Solution for Demosaicking, Denoising and Super-Resolution
MCANarXivPytorchMatrix-in-matrix CAN, Lightweight
IKC&SFTMDCVPR19-Blind Super-Resolution
SRNTTCVPR19TensorFlowNeural Texture Transfer
RawSRCVPR19TensorFlowReal Scene Super-Resolution, Raw Images
resLFCVPR19Light field
CameraSRCVPR19realistic image SR
ORDSRTIPmodelDCT domain SR
U-NetCVPRW19NTIRE19 real SR 2nd place, U-Net,MixUp,Synthesis
DRLNarxivDensely Residual Laplacian Super-Resolution
EDRNCVPRW19PytorchNTIRE19 real SR 9th places
FC2NarXivFully Channel-Concatenated
GMFNBMVC2019PytorchGated Multiple Feedback
CNN&TV-TV MinimizationBMVC2019TV-TV Minimization
HRANarXivHybrid Residual Attention Network
PPONarXivcodeProgressive Perception-Oriented Network
SROBBICCV19Targeted Perceptual Loss
RankSRGANICCV19PyTorchoral, rank-content loss
edge-informedICCVW19PyTorchEdge-Informed Single Image Super-Resolution
s-LWSRarxivLightweight
DNLNarxivVideo SR Deformable Non-local Network
MGANarxivMulti-grained Attention Networks
IMDNACM MM 2019PyTorchAIM19 Champion
ESRNarxivNAS
PFNLICCV19TensorflowVideoSR oral,Non-Local Spatio-Temporal Correlations
EBRNICCV19TensorflowEmbedded Block Residual Network
Deep SR-ITMICCV19matlabSDR to HDR, 4K SR
feature SRICCV19Super-Resolution for Small Object Detection
STFANICCV19PyTorchVideo Deblurring
KMSRICCV19PyTorchGAN for blur-kernel estimation
CFSNetICCV19PyTorchControllable Feature
FSRnetICCV19Multi-bin Trainable Linear Units
SAM+VAMICCVW19
SinGANICCV19PyTorchbestpaper, train from single image

2020

ModelPublishedCodeKeywords
FISRAAAI 2020TensorFlowVideo joint VFI-SR method,Multi-scale Temporal Loss
ADCSRarxiv
SCNAAAI 2020Scale-wise Convolution
LSRGANarxivLatent Space Regularization for srgan
Zooming Slow-MoCVPR 2020PyTorchjoint VFI and SR,one-stage, deformable ConvLSTM
MZSRCVPR 2020Meta-Transfer Learning, Zero-Shot
VESR-NetarxivYouku Video Enhancement and Super-Resolution Challenge Champion
blindvsrarxivPyTorchMotion blur estimation
HNAS-SRarxivPyTorchHierarchical Neural Architecture Search, Lightweight
DRNCVPR 2020PyTorchDual Regression, SISR STOA
SFMarxivPyTorchStochastic Frequency Masking, Improve method
EventSRCVPR 2020split three phases
USRNetCVPR 2020PyTorch
PULSECVPR 2020Self-Supervised
SPSRCVPR 2020CodeGradient Guidance, GAN
DASRarxivCodeReal-World Image Super-Resolution, Unsupervised SuperResolution, Domain Adaptation.
STVUNarxivPyTorchVideo Super-Resolution, Video Frame Interpolation, Joint space-time upsampling
AdaDSRarxivPyTorchAdaptive Inference
Scale-Arbitrary SRarxivCodeScale-Arbitrary Super-Resolution, Knowledge Transfer
DeepSEEarxivCodeExtreme super-resolution,32× magnification
CutBlurCVPR 2020PyTorchSR Data Augmentation
UDVDCVPR 2020Unified Dynamic Convolutional,SISR and denoise
DINIJCAI-PRICAI 2020SISR,asymmetric co-attention
PANetarxivPyTorchPyramid Attention
SRResCGANarxivPyTorch
ISRNarxiviterative optimization, feature normalization.
RFB-ESRGANCVPR 2020NTIRE 2020 Perceptual Extreme Super-Resolution Challenge winner
PHYSICS_SRAAAI 2020PyTorch
CSNLNCVPR 2020PyTorchCross-Scale Non-Local Attention,Exhaustive Self-Exemplars Mining, Similar to PANet
TTSRCVPR 2020PyTorchTexture Transformer
NSRarxivPyTorchNeural Sparse Representation
RFANetCVPR 2020state-of-the-art SISR
Correction filterCVPR 2020Enhance SISR model generalization
Unpaired SRCVPR 2020Unpaired Image Super-Resolution
STARnetCVPR 2020Space-Time-Aware multi-Resolution
SSSRCVPR 2020codeSISR for Semantic Segmentation and Human pose estimation
VSR_TGACVPR 2020codeTemporal Group Attention, Fast Spatial Alignment
SSENCVPR 2020Similarity-Aware Deformable Convolution

| SMSR | arxiv | | Sparse Masks, Efficient SISR
| LF-InterNet | ECCV 2020 | PyTorch | Spatial-Angular Interaction, Light Field Image SR |
| Invertible-Image-Rescaling | ECCV 2020 | Code | ECCV oral |
| IGNN | arxiv | Code | GNN, SISR |
| MIRNet | ECCV 2020 | PyTorch | multi-scale residual block |
| SFM | ECCV 2020 | PyTorch | stochastic frequency mask |
| TCSVT | arxiv | TensorFlow | LightWeight modules |
| PISR | ECCV 2020 | PyTorch | FSRCNN,distillation framework, HR privileged information |
| MuCAN | ECCV 2020 | | VideoSR, Temporal Multi-Correspondence Aggregation |
| DGP | ECCV 2020 |PyTorch | ECCV oral, GAN, Image Restoration and Manipulation, |
| RSDN| ECCV 2020 |Code | VideoSR, Recurrent Neural Network, TwoStream Block|
| CDC| ECCV 2020 |PyTorch | Diverse Real-world SR dataset, Component Divide-and-Conquer model, GradientWeighted loss|
| MS3-Conv| arxiv | | Multi-Scale cross-Scale Share-weights convolution |
| OverNet| arxiv | | Lightweight, Overscaling Module, multi-scale loss, Arbitrary Scale Factors |
| RRN| BMVC20 | code | VideoSR, Recurrent Residual Network, temporal modeling method |
| NAS-DIP| ECCV 2020 | | NAS|
| SRFlow| ECCV 2020 |code | Spotlight, Normalizing Flow|
| LatticeNet| ECCV 2020 | |Lattice Block, LatticeNet, Lightweight, Attention|
| BSRN| ECCV 2020 | |Model Quantization, Binary Neural Network, Bit-Accumulation Mechanism|
| VarSR| ECCV 2020 | |Variational Super-Resolution, very low resolution |
| HAN| ECCV 2020 | |SISR, holistic attention network, channel-spatial attention module |
| DeepTemporalSR| ECCV 2020 | |Temporal Super-Resolution |
| DGDML-SR| ECCV 2020 | |Zero-Shot, Depth Guided Internal Degradation Learning |
|MLSR| ECCV 2020 | |Meta-learning, Patch recurrence |
|PlugNet| ECCV 2020 | |Scene Text Recognition, Feature Squeeze Module |
|TextZoom| ECCV 2020 |code |Scene Text Recognition |
|TPSR| ECCV 2020 | |NAS,Tiny Perceptual SR |
|CUCaNet| ECCV 2020 | PyTorch |Coupled unmixing, cross-attention,hyperspectral super-resolution, multispectral, unsupervised |
|MAFFSRN| ECCVW 2020 | |Multi-Attentive Feature Fusion, Ultra Lightweight |
|SRResCycGAN| ECCVW 2020 | PyTorch |RealSR, CycGAN |
|A-CubeNet| arxiv | |SISR, lightweight|
|MoG-DUN| arxiv | |SISR |
|Understanding Deformable Alignment| arxiv | | VideoSR, EDVR, offset-fidelity loss |
|AdderSR| arxiv | | SISR, adder neural networks, Energy Efficient |
|RFDN| arxiv | | SISR, Lightweight, IMDN, AIM20 WINNER |
|Tarsier| arxiv | | improve NESRGAN+,injected noise, Diagonal CMA optimize |
|DeFiAN| arxiv | PyTorch |SISR, detail-fidelity attention, Hessian filtering |
|ASDN| arxiv | | Arbitrary Scale SR |
|DAN| NeurIPS 2020 |PyTorch | Unfolding the Alternating Optimization |
|DKC| ECCVW 2020 | | Deformable Kernel Convolutional, VSR |
|FAN| ECCVW 2020 | | Frequency aggregation network, RealSR |
|PAN| ECCVW 2020 |PyTorch | Lightweight, Pixel Attention |
|SCHN| arxiv | | Blind SR, Spatial Context Hallucination |

综述

[1] Wenming Yang, Xuechen Zhang, Yapeng Tian, Wei Wang, Jing-Hao Xue. Deep Learning for Single Image Super-Resolution: A Brief Review. arxiv, 2018. paper

[2]Saeed Anwar, Salman Khan, Nick Barnes. A Deep Journey into Super-resolution: A survey. arxiv, 2019.paper

[3]Wang, Z., Chen, J., & Hoi, S. C. (2019). Deep learning for image super-resolution: A survey. arXiv preprint arXiv:1902.06068.paper

[4]Hongying Liu and Zhubo Ruan and Peng Zhao and Fanhua Shang and Linlin Yang and Yuanyuan Liu. Video Super Resolution Based on Deep Learning: A comprehensive survey. arXiv preprint arXiv:2007.12928.[paper](

侃侃

本项目包含的超分辨率SR论文、开源项目相当多,十分推荐学习!

https://github.com/ChaofWang/Awesome-Super-Resolution

资料下载

在CVer公众号后台回复:超分辨率,即可下载访问最全的超分辨率SR论文、开源项目等资料。

在这里插入图片描述

最后

以上就是唠叨蜡烛为你收集整理的GitHub:超分辨率最全资料集锦前言Awesome-Super-Resolution的全部内容,希望文章能够帮你解决GitHub:超分辨率最全资料集锦前言Awesome-Super-Resolution所遇到的程序开发问题。

如果觉得靠谱客网站的内容还不错,欢迎将靠谱客网站推荐给程序员好友。

本图文内容来源于网友提供,作为学习参考使用,或来自网络收集整理,版权属于原作者所有。
点赞(38)

评论列表共有 0 条评论

立即
投稿
返回
顶部