我是靠谱客的博主 忐忑白羊,最近开发中收集的这篇文章主要介绍目标识别检测的所有算法,觉得挺不错的,现在分享给大家,希望可以做个参考。

概述

 

数据总览

Detection Results: VOC2012 intro: Competition “comp4” (train on additional data) homepage: http://host.robots.ox.ac.uk:8080/leaderboard/displaylb.php?challengeid=11&compid=4

Papers Deep Neural Networks for Object Detection paper: http://papers.nips.cc/paper/5207-deep-neural-networks-for-object-detection.pdf

OverFeat: Integrated Recognition, Localization and Detection using Convolutional Networks arxiv: http://arxiv.org/abs/1312.6229 github: https://github.com/sermanet/OverFeat code: http://cilvr.nyu.edu/doku.php?id=software:overfeat:start

R-CNN Rich feature hierarchies for accurate object detection and semantic segmentation intro: R-CNN arxiv: http://arxiv.org/abs/1311.2524 supp: http://people.eecs.berkeley.edu/~rbg/papers/r-cnn-cvpr-supp.pdf slides: http://www.image-net.org/challenges/LSVRC/2013/slides/r-cnn-ilsvrc2013-workshop.pdf slides: http://www.cs.berkeley.edu/~rbg/slides/rcnn-cvpr14-slides.pdf github: https://github.com/rbgirshick/rcnn notes: http://zhangliliang.com/2014/07/23/paper-note-rcnn/ caffe-pr(“Make R-CNN the Caffe detection example”): https://github.com/BVLC/caffe/pull/482

Fast R-CNN Fast R-CNN arxiv: http://arxiv.org/abs/1504.08083 slides: http://tutorial.caffe.berkeleyvision.org/caffe-cvpr15-detection.pdf github: https://github.com/rbgirshick/fast-rcnn github(COCO-branch): https://github.com/rbgirshick/fast-rcnn/tree/coco webcam demo: https://github.com/rbgirshick/fast-rcnn/pull/29 notes: http://zhangliliang.com/2015/05/17/paper-note-fast-rcnn/ notes: http://blog.csdn.net/linj_m/article/details/48930179 github(“Fast R-CNN in MXNet”): https://github.com/precedenceguo/mx-rcnn github: https://github.com/mahyarnajibi/fast-rcnn-torch github: https://github.com/apple2373/chainer-simple-fast-rnn github: https://github.com/zplizzi/tensorflow-fast-rcnn

A-Fast-RCNN: Hard Positive Generation via Adversary for Object Detection intro: CVPR 2017 arxiv: https://arxiv.org/abs/1704.03414 paper: http://abhinavsh.info/papers/pdfs/adversarial_object_detection.pdf github(Caffe): https://github.com/xiaolonw/adversarial-frcnn

Faster R-CNN Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks intro: NIPS 2015 arxiv: http://arxiv.org/abs/1506.01497 gitxiv: http://www.gitxiv.com/posts/8pfpcvefDYn2gSgXk/faster-r-cnn-towards-real-time-object-detection-with-region slides: http://web.cs.hacettepe.edu.tr/~aykut/classes/spring2016/bil722/slides/w05-FasterR-CNN.pdf github(official, Matlab): https://github.com/ShaoqingRen/faster_rcnn github: https://github.com/rbgirshick/py-faster-rcnn github: https://github.com/mitmul/chainer-faster-rcnn github: https://github.com/andreaskoepf/faster-rcnn.torch github: https://github.com/ruotianluo/Faster-RCNN-Densecap-torch github: https://github.com/smallcorgi/Faster-RCNN_TF github: https://github.com/CharlesShang/TFFRCNN github(C++ demo): https://github.com/YihangLou/FasterRCNN-Encapsulation-Cplusplus github: https://github.com/yhenon/keras-frcnn

Faster R-CNN in MXNet with distributed implementation and data parallelization github: https://github.com/dmlc/mxnet/tree/master/example/rcnn

Contextual Priming and Feedback for Faster R-CNN intro: ECCV 2016. Carnegie Mellon University paper: http://abhinavsh.info/context_priming_feedback.pdf poster: http://www.eccv2016.org/files/posters/P-1A-20.pdf

An Implementation of Faster RCNN with Study for Region Sampling intro: Technical Report, 3 pages. CMU arxiv: https://arxiv.org/abs/1702.02138 github: https://github.com/endernewton/tf-faster-rcnn

MultiBox Scalable Object Detection using Deep Neural Networks intro: first MultiBox. Train a CNN to predict Region of Interest. arxiv: http://arxiv.org/abs/1312.2249 github: https://github.com/google/multibox blog: https://research.googleblog.com/2014/12/high-quality-object-detection-at-scale.html

Scalable, High-Quality Object Detection intro: second MultiBox arxiv: http://arxiv.org/abs/1412.1441 github: https://github.com/google/multibox

SPP-Net Spatial Pyramid Pooling in Deep Convolutional Networks for Visual Recognition intro: ECCV 2014 / TPAMI 2015 arxiv: http://arxiv.org/abs/1406.4729 github: https://github.com/ShaoqingRen/SPP_net notes: http://zhangliliang.com/2014/09/13/paper-note-sppnet/

DeepID-Net DeepID-Net: Deformable Deep Convolutional Neural Networks for Object Detection intro: PAMI 2016 intro: an extension of R-CNN. box pre-training, cascade on region proposals, deformation layers and context representations project page: http://www.ee.cuhk.edu.hk/%CB%9Cwlouyang/projects/imagenetDeepId/index.html arxiv: http://arxiv.org/abs/1412.5661

Object Detectors Emerge in Deep Scene CNNs intro: ICLR 2015 arxiv: http://arxiv.org/abs/1412.6856 paper: https://www.robots.ox.ac.uk/~vgg/rg/papers/zhou_iclr15.pdf paper: https://people.csail.mit.edu/khosla/papers/iclr2015_zhou.pdf slides: http://places.csail.mit.edu/slide_iclr2015.pdf

segDeepM: Exploiting Segmentation and Context in Deep Neural Networks for Object Detection intro: CVPR 2015 project(code+data): https://www.cs.toronto.edu/~yukun/segdeepm.html arxiv: https://arxiv.org/abs/1502.04275 github: https://github.com/YknZhu/segDeepM

NoC Object Detection Networks on Convolutional Feature Maps intro: TPAMI 2015 arxiv: http://arxiv.org/abs/1504.06066

Improving Object Detection with Deep Convolutional Networks via Bayesian Optimization and Structured Prediction arxiv: http://arxiv.org/abs/1504.03293 slides: http://www.ytzhang.net/files/publications/2015-cvpr-det-slides.pdf github: https://github.com/YutingZhang/fgs-obj

DeepBox DeepBox: Learning Objectness with Convolutional Networks arxiv: http://arxiv.org/abs/1505.02146 github: https://github.com/weichengkuo/DeepBox

MR-CNN Object detection via a multi-region & semantic segmentation-aware CNN model intro: ICCV 2015. MR-CNN arxiv: http://arxiv.org/abs/1505.01749 github: https://github.com/gidariss/mrcnn-object-detection notes: http://zhangliliang.com/2015/05/17/paper-note-ms-cnn/ notes: http://blog.cvmarcher.com/posts/2015/05/17/multi-region-semantic-segmentation-aware-cnn/

YOLO You Only Look Once: Unified, Real-Time Object Detection

arxiv: http://arxiv.org/abs/1506.02640 code: http://pjreddie.com/darknet/yolo/ github: https://github.com/pjreddie/darknet blog: https://pjreddie.com/publications/yolo/ slides: https://docs.google.com/presentation/d/1aeRvtKG21KHdD5lg6Hgyhx5rPq_ZOsGjG5rJ1HP7BbA/pub?start=false&loop=false&delayms=3000&slide=id.p reddit: https://www.reddit.com/r/MachineLearning/comments/3a3m0o/realtime_object_detection_with_yolo/ github: https://github.com/gliese581gg/YOLO_tensorflow github: https://github.com/xingwangsfu/caffe-yolo github: https://github.com/frankzhangrui/Darknet-Yolo github: https://github.com/BriSkyHekun/py-darknet-yolo github: https://github.com/tommy-qichang/yolo.torch github: https://github.com/frischzenger/yolo-windows github: https://github.com/AlexeyAB/yolo-windows github: https://github.com/nilboy/tensorflow-yolo

darkflow - translate darknet to tensorflow. Load trained weights, retrain/fine-tune them using tensorflow, export constant graph def to C++ blog: https://thtrieu.github.io/notes/yolo-tensorflow-graph-buffer-cpp github: https://github.com/thtrieu/darkflow

Start Training YOLO with Our Own Data

intro: train with customized data and class numbers/labels. Linux / Windows version for darknet. blog: http://guanghan.info/blog/en/my-works/train-yolo/ github: https://github.com/Guanghan/darknet

YOLO: Core ML versus MPSNNGraph intro: Tiny YOLO for iOS implemented using CoreML but also using the new MPS graph API. blog: http://machinethink.net/blog/yolo-coreml-versus-mps-graph/ github: https://github.com/hollance/YOLO-CoreML-MPSNNGraph

TensorFlow YOLO object detection on Android intro: Real-time object detection on Android using the YOLO network with TensorFlow github: https://github.com/natanielruiz/android-yolo

YOLOv2 YOLO9000: Better, Faster, Stronger arxiv: https://arxiv.org/abs/1612.08242 code: http://pjreddie.com/yolo9000/ github(Chainer): https://github.com/leetenki/YOLOv2 github(Keras): https://github.com/allanzelener/YAD2K github(PyTorch): https://github.com/longcw/yolo2-pytorch github(Tensorflow): https://github.com/hizhangp/yolo_tensorflow github(Windows): https://github.com/AlexeyAB/darknet github: https://github.com/choasUp/caffe-yolo9000

Yolo_mark: GUI for marking bounded boxes of objects in images for training Yolo v2 github: https://github.com/AlexeyAB/Yolo_mark

R-CNN minus R arxiv: http://arxiv.org/abs/1506.06981

AttentionNet AttentionNet: Aggregating Weak Directions for Accurate Object Detection intro: ICCV 2015 intro: state-of-the-art performance of 65% (AP) on PASCAL VOC 2007/2012 human detection task arxiv: http://arxiv.org/abs/1506.07704 slides: https://www.robots.ox.ac.uk/~vgg/rg/slides/AttentionNet.pdf slides: http://image-net.org/challenges/talks/lunit-kaist-slide.pdf

DenseBox DenseBox: Unifying Landmark Localization with End to End Object Detection arxiv: http://arxiv.org/abs/1509.04874 demo: http://pan.baidu.com/s/1mgoWWsS KITTI result: http://www.cvlibs.net/datasets/kitti/eval_object.php

SSD SSD: Single Shot MultiBox Detector

intro: ECCV 2016 Oral arxiv: http://arxiv.org/abs/1512.02325 paper: http://www.cs.unc.edu/~wliu/papers/ssd.pdf slides: http://www.cs.unc.edu/%7Ewliu/papers/ssd_eccv2016_slide.pdf github(Official): https://github.com/weiliu89/caffe/tree/ssd video: http://weibo.com/p/2304447a2326da963254c963c97fb05dd3a973 github: https://github.com/zhreshold/mxnet-ssd github: https://github.com/zhreshold/mxnet-ssd.cpp github: https://github.com/rykov8/ssd_keras github: https://github.com/balancap/SSD-Tensorflow github: https://github.com/amdegroot/ssd.pytorch

What’s the diffience in performance between this new code you pushed and the previous code? #327 https://github.com/weiliu89/caffe/issues/327 Enhancement of SSD by concatenating feature maps for object detection intro: rainbow SSD (R-SSD) arxiv: https://arxiv.org/abs/1705.09587

DSSD DSSD : Deconvolutional Single Shot Detector intro: UNC Chapel Hill & Amazon Inc arxiv: https://arxiv.org/abs/1701.06659

Inside-Outside Net (ION) Inside-Outside Net: Detecting Objects in Context with Skip Pooling and Recurrent Neural Networks intro: “0.8s per image on a Titan X GPU (excluding proposal generation) without two-stage bounding-box regression and 1.15s per image with it”. arxiv: http://arxiv.org/abs/1512.04143 slides: http://www.seanbell.ca/tmp/ion-coco-talk-bell2015.pdf coco-leaderboard: http://mscoco.org/dataset/#detections-leaderboard

Adaptive Object Detection Using Adjacency and Zoom Prediction intro: CVPR 2016. AZ-Net arxiv: http://arxiv.org/abs/1512.07711 github: https://github.com/luyongxi/az-net youtube: https://www.youtube.com/watch?v=YmFtuNwxaNM

G-CNN G-CNN: an Iterative Grid Based Object Detector arxiv: http://arxiv.org/abs/1512.07729

Factors in Finetuning Deep Model for object detection Factors in Finetuning Deep Model for Object Detection with Long-tail Distribution intro: CVPR 2016.rank 3rd for provided data and 2nd for external data on ILSVRC 2015 object detection project page: http://www.ee.cuhk.edu.hk/~wlouyang/projects/ImageNetFactors/CVPR16.html arxiv: http://arxiv.org/abs/1601.05150

We don’t need no bounding-boxes: Training object class detectors using only human verification arxiv: http://arxiv.org/abs/1602.08405

HyperNet HyperNet: Towards Accurate Region Proposal Generation and Joint Object Detection arxiv: http://arxiv.org/abs/1604.00600

MultiPathNet A MultiPath Network for Object Detection intro: BMVC 2016. Facebook AI Research (FAIR) arxiv: http://arxiv.org/abs/1604.02135 github: https://github.com/facebookresearch/multipathnet

CRAFT CRAFT Objects from Images intro: CVPR 2016. Cascade Region-proposal-network And FasT-rcnn. an extension of Faster R-CNN project page: http://byangderek.github.io/projects/craft.html arxiv: https://arxiv.org/abs/1604.03239 paper: http://www.cv-foundation.org/openaccess/content_cvpr_2016/papers/Yang_CRAFT_Objects_From_CVPR_2016_paper.pdf github: https://github.com/byangderek/CRAFT

OHEM Training Region-based Object Detectors with Online Hard Example Mining intro: CVPR 2016 Oral. Online hard example mining (OHEM) arxiv: http://arxiv.org/abs/1604.03540 paper: http://www.cv-foundation.org/openaccess/content_cvpr_2016/papers/Shrivastava_Training_Region-Based_Object_CVPR_2016_paper.pdf github(Official): https://github.com/abhi2610/ohem author page: http://abhinav-shrivastava.info/

Exploit All the Layers: Fast and Accurate CNN Object Detector with Scale Dependent Pooling and Cascaded Rejection Classifiers intro: CVPR 2016 keywords: scale-dependent pooling (SDP), cascaded rejection classifiers (CRC) paper: http://www-personal.umich.edu/~wgchoi/SDP-CRC_camready.pdf

R-FCN R-FCN: Object Detection via Region-based Fully Convolutional Networks arxiv: http://arxiv.org/abs/1605.06409 github: https://github.com/daijifeng001/R-FCN github: https://github.com/Orpine/py-R-FCN github: https://github.com/PureDiors/pytorch_RFCN github: https://github.com/bharatsingh430/py-R-FCN-multiGPU github: https://github.com/xdever/RFCN-tensorflow

Recycle deep features for better object detection arxiv: http://arxiv.org/abs/1607.05066

MS-CNN A Unified Multi-scale Deep Convolutional Neural Network for Fast Object Detection intro: ECCV 2016 intro: 640×480: 15 fps, 960×720: 8 fps arxiv: http://arxiv.org/abs/1607.07155 github: https://github.com/zhaoweicai/mscnn poster: http://www.eccv2016.org/files/posters/P-2B-38.pdf

Multi-stage Object Detection with Group Recursive Learning intro: VOC2007: 78.6%, VOC2012: 74.9% arxiv: http://arxiv.org/abs/1608.05159

Subcategory-aware Convolutional Neural Networks for Object Proposals and Detection intro: WACV 2017. SubCNN arxiv: http://arxiv.org/abs/1604.04693 github: https://github.com/tanshen/SubCNN

PVANET PVANET: Deep but Lightweight Neural Networks for Real-time Object Detection intro: “less channels with more layers”, concatenated ReLU, Inception, and HyperNet, batch normalization, residual connections arxiv: http://arxiv.org/abs/1608.08021 github: https://github.com/sanghoon/pva-faster-rcnn leaderboard(PVANet 9.0): http://host.robots.ox.ac.uk:8080/leaderboard/displaylb.php?challengeid=11&compid=4

PVANet: Lightweight Deep Neural Networks for Real-time Object Detection intro: Presented at NIPS 2016 Workshop on Efficient Methods for Deep Neural Networks (EMDNN). Continuation of arXiv:1608.08021 arxiv: https://arxiv.org/abs/1611.08588

GBD-Net Gated Bi-directional CNN for Object Detection intro: The Chinese University of Hong Kong & Sensetime Group Limited paper: http://link.springer.com/chapter/10.1007/978-3-319-46478-7_22 mirror: https://pan.baidu.com/s/1dFohO7v

Crafting GBD-Net for Object Detection intro: winner of the ImageNet object detection challenge of 2016. CUImage and CUVideo intro: gated bi-directional CNN (GBD-Net) arxiv: https://arxiv.org/abs/1610.02579 github: https://github.com/craftGBD/craftGBD

StuffNet StuffNet: Using ‘Stuff’ to Improve Object Detection arxiv: https://arxiv.org/abs/1610.05861

Generalized Haar Filter based Deep Networks for Real-Time Object Detection in Traffic Scene arxiv: https://arxiv.org/abs/1610.09609

Hierarchical Object Detection with Deep Reinforcement Learning intro: Deep Reinforcement Learning Workshop (NIPS 2016) project page: https://imatge-upc.github.io/detection-2016-nipsws/ arxiv: https://arxiv.org/abs/1611.03718 slides: http://www.slideshare.net/xavigiro/hierarchical-object-detection-with-deep-reinforcement-learning github: https://github.com/imatge-upc/detection-2016-nipsws blog: http://jorditorres.org/nips/

Learning to detect and localize many objects from few examples arxiv: https://arxiv.org/abs/1611.05664

Speed/accuracy trade-offs for modern convolutional object detectors intro: Google Research arxiv: https://arxiv.org/abs/1611.10012

SqueezeDet: Unified, Small, Low Power Fully Convolutional Neural Networks for Real-Time Object Detection for Autonomous Driving arxiv: https://arxiv.org/abs/1612.01051 github: https://github.com/BichenWuUCB/squeezeDet

Feature Pyramid Network (FPN) Feature Pyramid Networks for Object Detection intro: Facebook AI Research arxiv: https://arxiv.org/abs/1612.03144

Action-Driven Object Detection with Top-Down Visual Attentions arxiv: https://arxiv.org/abs/1612.06704

Beyond Skip Connections: Top-Down Modulation for Object Detection intro: CMU & UC Berkeley & Google Research arxiv: https://arxiv.org/abs/1612.06851

Wide-Residual-Inception Networks for Real-time Object Detection intro: Inha University arxiv: https://arxiv.org/abs/1702.01243

Attentional Network for Visual Object Detection intro: University of Maryland & Mitsubishi Electric Research Laboratories arxiv: https://arxiv.org/abs/1702.01478

CC-Net Learning Chained Deep Features and Classifiers for Cascade in Object Detection intro: chained cascade network (CC-Net). 81.1% mAP on PASCAL VOC 2007 arxiv: https://arxiv.org/abs/1702.07054

DeNet: Scalable Real-time Object Detection with Directed Sparse Sampling https://arxiv.org/abs/1703.10295 Discriminative Bimodal Networks for Visual Localization and Detection with Natural Language Queries intro: CVPR 2017 arxiv: https://arxiv.org/abs/1704.03944

Spatial Memory for Context Reasoning in Object Detection arxiv: https://arxiv.org/abs/1704.04224

Accurate Single Stage Detector Using Recurrent Rolling Convolution intro: CVPR 2017. SenseTime keywords: Recurrent Rolling Convolution (RRC) arxiv: https://arxiv.org/abs/1704.05776 github: https://github.com/xiaohaoChen/rrc_detection

Deep Occlusion Reasoning for Multi-Camera Multi-Target Detection https://arxiv.org/abs/1704.05775 S-OHEM: Stratified Online Hard Example Mining for Object Detection https://arxiv.org/abs/1705.02233 LCDet: Low-Complexity Fully-Convolutional Neural Networks for Object Detection in Embedded Systems intro: Embedded Vision Workshop in CVPR. UC San Diego & Qualcomm Inc arxiv: https://arxiv.org/abs/1705.05922

Point Linking Network for Object Detection intro: Point Linking Network (PLN) arxiv: https://arxiv.org/abs/1706.03646

Perceptual Generative Adversarial Networks for Small Object Detection https://arxiv.org/abs/1706.05274 Few-shot Object Detection https://arxiv.org/abs/1706.08249 SMC Faster R-CNN: Toward a scene-specialized multi-object detector https://arxiv.org/abs/1706.10217 Towards lightweight convolutional neural networks for object detection https://arxiv.org/abs/1707.01395 RON: Reverse Connection with Objectness Prior Networks for Object Detection intro: CVPR 2017 arxiv: https://arxiv.org/abs/1707.01691 github: https://github.com/taokong/RON

NMS End-to-End Integration of a Convolutional Network, Deformable Parts Model and Non-Maximum Suppression intro: CVPR 2015 arxiv: http://arxiv.org/abs/1411.5309 paper: http://www.cv-foundation.org/openaccess/content_cvpr_2015/papers/Wan_End-to-End_Integration_of_2015_CVPR_paper.pdf

A convnet for non-maximum suppression arxiv: http://arxiv.org/abs/1511.06437

Improving Object Detection With One Line of Code intro: University of Maryland keywords: Soft-NMS arxiv: https://arxiv.org/abs/1704.04503 github: https://github.com/bharatsingh430/soft-nms

Learning non-maximum suppression https://arxiv.org/abs/1705.02950 Weakly Supervised Object Detection Track and Transfer: Watching Videos to Simulate Strong Human Supervision for Weakly-Supervised Object Detection intro: CVPR 2016 arxiv: http://arxiv.org/abs/1604.05766

Weakly supervised object detection using pseudo-strong labels arxiv: http://arxiv.org/abs/1607.04731

Saliency Guided End-to-End Learning for Weakly Supervised Object Detection intro: IJCAI 2017 arxiv: https://arxiv.org/abs/1706.06768

Detection From Video **Learning Object Class Detectors from Weakly Annotated Video intro: CVPR 2012 paper: https://www.vision.ee.ethz.ch/publications/papers/proceedings/eth_biwi_00905.pdf

Analysing domain shift factors between videos and images for object detection arxiv: https://arxiv.org/abs/1501.01186

Video Object Recognition slides: http://vision.princeton.edu/courses/COS598/2015sp/slides/VideoRecog/Video%20Object%20Recognition.pptx

Deep Learning for Saliency Prediction in Natural Video intro: Submitted on 12 Jan 2016 keywords: Deep learning, saliency map, optical flow, convolution network, contrast features paper: https://hal.archives-ouvertes.fr/hal-01251614/document

T-CNN T-CNN: Tubelets with Convolutional Neural Networks for Object Detection from Videos intro: Winning solution in ILSVRC2015 Object Detection from Video(VID) Task arxiv: http://arxiv.org/abs/1604.02532 github: https://github.com/myfavouritekk/T-CNN

Object Detection from Video Tubelets with Convolutional Neural Networks intro: CVPR 2016 Spotlight paper arxiv: https://arxiv.org/abs/1604.04053 paper: http://www.ee.cuhk.edu.hk/~wlouyang/Papers/KangVideoDet_CVPR16.pdf gihtub: https://github.com/myfavouritekk/vdetlib

Object Detection in Videos with Tubelets and Multi-context Cues intro: SenseTime Group slides: http://www.ee.cuhk.edu.hk/~xgwang/CUvideo.pdf slides: http://image-net.org/challenges/talks/Object%20Detection%20in%20Videos%20with%20Tubelets%20and%20Multi-context%20Cues%20-%20Final.pdf

Context Matters: Refining Object Detection in Video with Recurrent Neural Networks intro: BMVC 2016 keywords: pseudo-labeler arxiv: http://arxiv.org/abs/1607.04648 paper: http://vision.cornell.edu/se3/wp-content/uploads/2016/07/video_object_detection_BMVC.pdf

CNN Based Object Detection in Large Video Images intro: WangTao @ 爱奇艺 keywords: object retrieval, object detection, scene classification slides: http://on-demand.gputechconf.com/gtc/2016/presentation/s6362-wang-tao-cnn-based-object-detection-large-video-images.pdf

Object Detection in Videos with Tubelet Proposal Networks arxiv: https://arxiv.org/abs/1702.06355

Flow-Guided Feature Aggregation for Video Object Detection intro: MSRA arxiv: https://arxiv.org/abs/1703.10025

Video Object Detection using Faster R-CNN blog: http://andrewliao11.github.io/object_detection/faster_rcnn/ github: https://github.com/andrewliao11/py-faster-rcnn-imagenet

Object Detection in 3D **Vote3Deep: Fast Object Detection in 3D Point Clouds Using Efficient Convolutional Neural Networks arxiv: https://arxiv.org/abs/1609.06666

Object Detection on RGB-D **Learning Rich Features from RGB-D Images for Object Detection and Segmentation arxiv: http://arxiv.org/abs/1407.5736

Differential Geometry Boosts Convolutional Neural Networks for Object Detection intro: CVPR 2016 paper: http://www.cv-foundation.org/openaccess/content_cvpr_2016_workshops/w23/html/Wang_Differential_Geometry_Boosts_CVPR_2016_paper.html

A Self-supervised Learning System for Object Detection using Physics Simulation and Multi-view Pose Estimation https://arxiv.org/abs/1703.03347 Salient Object Detection This task involves predicting the salient regions of an image given by human eye fixations. Best Deep Saliency Detection Models (CVPR 2016 & 2015) http://i.cs.hku.hk/~yzyu/vision.html Large-scale optimization of hierarchical features for saliency prediction in natural images** paper: http://coxlab.org/pdfs/cvpr2014_vig_saliency.pdf

Predicting Eye Fixations using Convolutional Neural Networks paper: http://www.escience.cn/system/file?fileId=72648

Saliency Detection by Multi-Context Deep Learning paper: http://www.cv-foundation.org/openaccess/content_cvpr_2015/papers/Zhao_Saliency_Detection_by_2015_CVPR_paper.pdf

DeepSaliency: Multi-Task Deep Neural Network Model for Salient Object Detection arxiv: http://arxiv.org/abs/1510.05484

SuperCNN: A Superpixelwise Convolutional Neural Network for Salient Object Detection paper: www.shengfenghe.com/supercnn-a-superpixelwise-convolutional-neural-network-for-salient-object-detection.html

Shallow and Deep Convolutional Networks for Saliency Prediction intro: CVPR 2016 arxiv: http://arxiv.org/abs/1603.00845 github: https://github.com/imatge-upc/saliency-2016-cvpr

Recurrent Attentional Networks for Saliency Detection intro: CVPR 2016. recurrent attentional convolutional-deconvolution network (RACDNN) arxiv: http://arxiv.org/abs/1604.03227

Two-Stream Convolutional Networks for Dynamic Saliency Prediction arxiv: http://arxiv.org/abs/1607.04730

Unconstrained Salient Object Detection Unconstrained Salient Object Detection via Proposal Subset Optimization

intro: CVPR 2016 project page: http://cs-people.bu.edu/jmzhang/sod.html paper: http://cs-people.bu.edu/jmzhang/SOD/CVPR16SOD_camera_ready.pdf github: https://github.com/jimmie33/SOD caffe model zoo: https://github.com/BVLC/caffe/wiki/Model-Zoo#cnn-object-proposal-models-for-salient-object-detection

DHSNet: Deep Hierarchical Saliency Network for Salient Object Detection paper: http://www.cv-foundation.org/openaccess/content_cvpr_2016/papers/Liu_DHSNet_Deep_Hierarchical_CVPR_2016_paper.pdf

Salient Object Subitizing

intro: CVPR 2015 intro: predicting the existence and the number of salient objects in an image using holistic cues project page: http://cs-people.bu.edu/jmzhang/sos.html arxiv: http://arxiv.org/abs/1607.07525 paper: http://cs-people.bu.edu/jmzhang/SOS/SOS_preprint.pdf caffe model zoo: https://github.com/BVLC/caffe/wiki/Model-Zoo#cnn-models-for-salient-object-subitizing

Deeply-Supervised Recurrent Convolutional Neural Network for Saliency Detection intro: ACMMM 2016. deeply-supervised recurrent convolutional neural network (DSRCNN) arxiv: http://arxiv.org/abs/1608.05177

Saliency Detection via Combining Region-Level and Pixel-Level Predictions with CNNs intro: ECCV 2016 arxiv: http://arxiv.org/abs/1608.05186

Edge Preserving and Multi-Scale Contextual Neural Network for Salient Object Detection arxiv: http://arxiv.org/abs/1608.08029

A Deep Multi-Level Network for Saliency Prediction arxiv: http://arxiv.org/abs/1609.01064

Visual Saliency Detection Based on Multiscale Deep CNN Features intro: IEEE Transactions on Image Processing arxiv: http://arxiv.org/abs/1609.02077

A Deep Spatial Contextual Long-term Recurrent Convolutional Network for Saliency Detection intro: DSCLRCN arxiv: https://arxiv.org/abs/1610.01708

Deeply supervised salient object detection with short connections arxiv: https://arxiv.org/abs/1611.04849

Weakly Supervised Top-down Salient Object Detection intro: Nanyang Technological University arxiv: https://arxiv.org/abs/1611.05345

SalGAN: Visual Saliency Prediction with Generative Adversarial Networks project page: https://imatge-upc.github.io/saliency-salgan-2017/ arxiv: https://arxiv.org/abs/1701.01081

Visual Saliency Prediction Using a Mixture of Deep Neural Networks arxiv: https://arxiv.org/abs/1702.00372

A Fast and Compact Salient Score Regression Network Based on Fully Convolutional Network arxiv: https://arxiv.org/abs/1702.00615

Saliency Detection by Forward and Backward Cues in Deep-CNNs https://arxiv.org/abs/1703.00152 Supervised Adversarial Networks for Image Saliency Detection https://arxiv.org/abs/1704.07242 Saliency Detection in Video Deep Learning For Video Saliency Detection arxiv: https://arxiv.org/abs/1702.00871

Visual Relationship Detection **Visual Relationship Detection with Language Priors intro: ECCV 2016 oral paper: https://cs.stanford.edu/people/ranjaykrishna/vrd/vrd.pdf github: https://github.com/Prof-Lu-Cewu/Visual-Relationship-Detection

ViP-CNN: A Visual Phrase Reasoning Convolutional Neural Network for Visual Relationship Detection intro: Visual Phrase reasoning Convolutional Neural Network (ViP-CNN), Visual Phrase Reasoning Structure (VPRS) arxiv: https://arxiv.org/abs/1702.07191

Visual Translation Embedding Network for Visual Relation Detection arxiv: https://www.arxiv.org/abs/1702.08319

Deep Variation-structured Reinforcement Learning for Visual Relationship and Attribute Detection intro: CVPR 2017 spotlight paper arxiv: https://arxiv.org/abs/1703.03054

Detecting Visual Relationships with Deep Relational Networks intro: CVPR 2017 oral. The Chinese University of Hong Kong arxiv: https://arxiv.org/abs/1704.03114

Identifying Spatial Relations in Images using Convolutional Neural Networks https://arxiv.org/abs/1706.04215 Specific Object Deteciton Face Deteciton Multi-view Face Detection Using Deep Convolutional Neural Networks** intro: Yahoo arxiv: http://arxiv.org/abs/1502.02766 github: https://github.com/guoyilin/FaceDetection_CNN

From Facial Parts Responses to Face Detection: A Deep Learning Approach

intro: ICCV 2015. CUHK project page: http://personal.ie.cuhk.edu.hk/~ys014/projects/Faceness/Faceness.html arxiv: https://arxiv.org/abs/1509.06451 paper: http://www.cv-foundation.org/openaccess/content_iccv_2015/papers/Yang_From_Facial_Parts_ICCV_2015_paper.pdf

Compact Convolutional Neural Network Cascade for Face Detection arxiv: http://arxiv.org/abs/1508.01292 github: https://github.com/Bkmz21/FD-Evaluation github: https://github.com/Bkmz21/CompactCNNCascade

Face Detection with End-to-End Integration of a ConvNet and a 3D Model intro: ECCV 2016 arxiv: https://arxiv.org/abs/1606.00850 github(MXNet): https://github.com/tfwu/FaceDetection-ConvNet-3D

CMS-RCNN: Contextual Multi-Scale Region-based CNN for Unconstrained Face Detection intro: CMU arxiv: https://arxiv.org/abs/1606.05413

Finding Tiny Faces intro: CVPR 2017. CMU project page: http://www.cs.cmu.edu/~peiyunh/tiny/index.html arxiv: https://arxiv.org/abs/1612.04402 github: https://github.com/peiyunh/tiny github(inference-only): https://github.com/chinakook/hr101_mxnet

Towards a Deep Learning Framework for Unconstrained Face Detection intro: overlap with CMS-RCNN arxiv: https://arxiv.org/abs/1612.05322

Supervised Transformer Network for Efficient Face Detection arxiv: http://arxiv.org/abs/1607.05477

UnitBox UnitBox: An Advanced Object Detection Network intro: ACM MM 2016 arxiv: http://arxiv.org/abs/1608.01471

Bootstrapping Face Detection with Hard Negative Examples author: 万韶华 @ 小米. intro: Faster R-CNN, hard negative mining. state-of-the-art on the FDDB dataset arxiv: http://arxiv.org/abs/1608.02236

Grid Loss: Detecting Occluded Faces intro: ECCV 2016 arxiv: https://arxiv.org/abs/1609.00129 paper: http://lrs.icg.tugraz.at/pubs/opitz_eccv_16.pdf poster: http://www.eccv2016.org/files/posters/P-2A-34.pdf

A Multi-Scale Cascade Fully Convolutional Network Face Detector intro: ICPR 2016 arxiv: http://arxiv.org/abs/1609.03536

MTCNN Joint Face Detection and Alignment using Multi-task Cascaded Convolutional Networks Joint Face Detection and Alignment using Multi-task Cascaded Convolutional Neural Networks

project page: https://kpzhang93.github.io/MTCNN_face_detection_alignment/index.html arxiv: https://arxiv.org/abs/1604.02878 github(Matlab): https://github.com/kpzhang93/MTCNN_face_detection_alignment github: https://github.com/pangyupo/mxnet_mtcnn_face_detection github: https://github.com/DaFuCoding/MTCNN_Caffe github(MXNet): https://github.com/Seanlinx/mtcnn github: https://github.com/Pi-DeepLearning/RaspberryPi-FaceDetection-MTCNN-Caffe-With-Motion github(Caffe): https://github.com/foreverYoungGitHub/MTCNN github: https://github.com/CongWeilin/mtcnn-caffe github: https://github.com/AlphaQi/MTCNN-light

Face Detection using Deep Learning: An Improved Faster RCNN Approach intro: DeepIR Inc arxiv: https://arxiv.org/abs/1701.08289

Faceness-Net: Face Detection through Deep Facial Part Responses intro: An extended version of ICCV 2015 paper arxiv: https://arxiv.org/abs/1701.08393

Multi-Path Region-Based Convolutional Neural Network for Accurate Detection of Unconstrained “Hard Faces” intro: CVPR 2017. MP-RCNN, MP-RPN arxiv: https://arxiv.org/abs/1703.09145

End-To-End Face Detection and Recognition https://arxiv.org/abs/1703.10818 Face R-CNN https://arxiv.org/abs/1706.01061 Face Detection through Scale-Friendly Deep Convolutional Networks https://arxiv.org/abs/1706.02863 Scale-Aware Face Detection intro: CVPR 2017. SenseTime & Tsinghua University arxiv: https://arxiv.org/abs/1706.09876

Facial Point / Landmark Detection Deep Convolutional Network Cascade for Facial Point Detection

homepage: http://mmlab.ie.cuhk.edu.hk/archive/CNN_FacePoint.htm paper: http://www.ee.cuhk.edu.hk/~xgwang/papers/sunWTcvpr13.pdf github: https://github.com/luoyetx/deep-landmark

Facial Landmark Detection by Deep Multi-task Learning intro: ECCV 2014 project page: http://mmlab.ie.cuhk.edu.hk/projects/TCDCN.html paper: http://personal.ie.cuhk.edu.hk/~ccloy/files/eccv_2014_deepfacealign.pdf github(Matlab): https://github.com/zhzhanp/TCDCN-face-alignment

A Recurrent Encoder-Decoder Network for Sequential Face Alignment intro: ECCV 2016 arxiv: https://arxiv.org/abs/1608.05477

Detecting facial landmarks in the video based on a hybrid framework arxiv: http://arxiv.org/abs/1609.06441

Deep Constrained Local Models for Facial Landmark Detection arxiv: https://arxiv.org/abs/1611.08657

Effective face landmark localization via single deep network arxiv: https://arxiv.org/abs/1702.02719

A Convolution Tree with Deconvolution Branches: Exploiting Geometric Relationships for Single Shot Keypoint Detection https://arxiv.org/abs/1704.01880 Deep Alignment Network: A convolutional neural network for robust face alignment intro: CVPRW 2017 arxiv: https://arxiv.org/abs/1706.01789 gihtub: https://github.com/MarekKowalski/DeepAlignmentNetwork

People Detection **End-to-end people detection in crowded scenes

arxiv: http://arxiv.org/abs/1506.04878 github: https://github.com/Russell91/reinspect ipn: http://nbviewer.ipython.org/github/Russell91/ReInspect/blob/master/evaluation_reinspect.ipynb youtube: https://www.youtube.com/watch?v=QeWl0h3kQ24

Detecting People in Artwork with CNNs intro: ECCV 2016 Workshops arxiv: https://arxiv.org/abs/1610.08871

Deep Multi-camera People Detection arxiv: https://arxiv.org/abs/1702.04593

Person Head Detection Context-aware CNNs for person head detection arxiv: http://arxiv.org/abs/1511.07917 github: https://github.com/aosokin/cnn_head_detection

Pedestrian Detection Pedestrian Detection aided by Deep Learning Semantic Tasks intro: CVPR 2015 project page: http://mmlab.ie.cuhk.edu.hk/projects/TA-CNN/ arxiv: http://arxiv.org/abs/1412.0069

Deep Learning Strong Parts for Pedestrian Detection intro: ICCV 2015. CUHK. DeepParts intro: Achieving 11.89% average miss rate on Caltech Pedestrian Dataset paper: http://personal.ie.cuhk.edu.hk/~pluo/pdf/tianLWTiccv15.pdf

Taking a Deeper Look at Pedestrians intro: CVPR 2015 arxiv: https://arxiv.org/abs/1501.05790

Convolutional Channel Features intro: ICCV 2015 arxiv: https://arxiv.org/abs/1504.07339 github: https://github.com/byangderek/CCF

Learning Complexity-Aware Cascades for Deep Pedestrian Detection intro: ICCV 2015 arxiv: https://arxiv.org/abs/1507.05348

Deep convolutional neural networks for pedestrian detection arxiv: http://arxiv.org/abs/1510.03608 github: https://github.com/DenisTome/DeepPed

Scale-aware Fast R-CNN for Pedestrian Detection arxiv: https://arxiv.org/abs/1510.08160

New algorithm improves speed and accuracy of pedestrian detection blog: http://www.eurekalert.org/pub_releases/2016-02/uoc–nai020516.php

Pushing the Limits of Deep CNNs for Pedestrian Detection intro: “set a new record on the Caltech pedestrian dataset, lowering the log-average miss rate from 11.7% to 8.9%” arxiv: http://arxiv.org/abs/1603.04525

A Real-Time Deep Learning Pedestrian Detector for Robot Navigation arxiv: http://arxiv.org/abs/1607.04436

A Real-Time Pedestrian Detector using Deep Learning for Human-Aware Navigation arxiv: http://arxiv.org/abs/1607.04441

Is Faster R-CNN Doing Well for Pedestrian Detection? intro: ECCV 2016 arxiv: http://arxiv.org/abs/1607.07032 github: https://github.com/zhangliliang/RPN_BF/tree/RPN-pedestrian

Reduced Memory Region Based Deep Convolutional Neural Network Detection intro: IEEE 2016 ICCE-Berlin arxiv: http://arxiv.org/abs/1609.02500

Fused DNN: A deep neural network fusion approach to fast and robust pedestrian detection arxiv: https://arxiv.org/abs/1610.03466

Multispectral Deep Neural Networks for Pedestrian Detection intro: BMVC 2016 oral arxiv: https://arxiv.org/abs/1611.02644

Expecting the Unexpected: Training Detectors for Unusual Pedestrians with Adversarial Imposters intro: CVPR 2017 project page: http://ml.cs.tsinghua.edu.cn:5000/publications/synunity/ arxiv: https://arxiv.org/abs/1703.06283 github(Tensorflow): https://github.com/huangshiyu13/RPNplus

Illuminating Pedestrians via Simultaneous Detection & Segmentation [https://arxiv.org/abs/1706.08564](https://arxiv.org/abs/1706.08564 Rotational Rectification Network for Robust Pedestrian Detection intro: CMU & Volvo Construction arxiv: https://arxiv.org/abs/1706.08917

Vehicle Detection DAVE: A Unified Framework for Fast Vehicle Detection and Annotation intro: ECCV 2016 arxiv: http://arxiv.org/abs/1607.04564

Evolving Boxes for fast Vehicle Detection arxiv: https://arxiv.org/abs/1702.00254

作者:Kwan_SS 链接:http://www.jianshu.com/p/6677247f05b4 來源:简书 著作权归作者所有。商业转载请联系作者获得授权,非商业转载请注明出处。

最后

以上就是忐忑白羊为你收集整理的目标识别检测的所有算法的全部内容,希望文章能够帮你解决目标识别检测的所有算法所遇到的程序开发问题。

如果觉得靠谱客网站的内容还不错,欢迎将靠谱客网站推荐给程序员好友。

本图文内容来源于网友提供,作为学习参考使用,或来自网络收集整理,版权属于原作者所有。
点赞(58)

评论列表共有 0 条评论

立即
投稿
返回
顶部