我是靠谱客的博主 任性星星,最近开发中收集的这篇文章主要介绍论文笔记-DeepLung: Deep 3D Dual Path Nets for Automated Pulmonary Nodule Detection and Classification,觉得挺不错的,现在分享给大家,希望可以做个参考。

概述

这篇论文来自与加州大学欧文分校,百度研究和腾讯AI医学AI实验室。

该论文提出了一整套自动检测和分类肺结节的系统。系统架构如下图:
这里写图片描述
前半部分为肺结节检测系统,采用3D Faster R-CNN网络来检测肺结节,在3D Faster R-CNN中采用了一种类似于U-net的encoder,decoder结构以及DPN结构,更好的学习特征。后半部分使用3D DPN来提取检测到的肺结节的特征,然后使用GBM对肺结节进行分类,分为良性和恶性。

使用3D DPN(Dual path network)的3D Faster R-CNN网络用于结节检测

DPN的主要结构如下图:
这里写图片描述
该架构的优势是,既继承了残差网络的优势,防止梯度消失和实现特征重用,也继承了密集连接的优势,利用新的特征。

本文用于结节检测的3D Faster R-CNN架构

最后

以上就是任性星星为你收集整理的论文笔记-DeepLung: Deep 3D Dual Path Nets for Automated Pulmonary Nodule Detection and Classification的全部内容,希望文章能够帮你解决论文笔记-DeepLung: Deep 3D Dual Path Nets for Automated Pulmonary Nodule Detection and Classification所遇到的程序开发问题。

如果觉得靠谱客网站的内容还不错,欢迎将靠谱客网站推荐给程序员好友。

本图文内容来源于网友提供,作为学习参考使用,或来自网络收集整理,版权属于原作者所有。
点赞(47)

评论列表共有 0 条评论

立即
投稿
返回
顶部