我是靠谱客的博主 霸气帅哥,最近开发中收集的这篇文章主要介绍matlab基本运算与函数,matlab基本运算与函数使用教程,觉得挺不错的,现在分享给大家,希望可以做个参考。

概述

在MATLAB下进行基本数学运算,只需将运算式直接打入提示号(>>)之後,并按入Enter键即可。例如:

>> (5*2+1.3-0.8)*10/25

ans =4.2000

MATLAB会将运算结果直接存入一变数ans,代表MATLAB运算後的答案(Answer)并显示其数值於萤幕上。

小提示: ">>"是MATLAB的提示符号(Prompt),但在PC中文视窗系统下,由於编码方式不同,此提示符号常会消失不见,但这并不会影响到MATLAB的运算结果。

我们也可将上述运算式的结果设定给另一个变数x:

x = (5*2+1.3-0.8)*10^2/25

x = 42

此时MATLAB会直接显示x的值。由上例可知,MATLAB认识所有一般常用到的加(+)、减(-)、乘(*)、除(/)的数学运算符号,以及幂次运算(^)。

小提示: MATLAB将所有变数均存成double的形式,所以不需经过变数宣告(Variable declaration)。MATLAB同时也会自动进行记忆体的使用和回收,而不必像C语言,必须由使用者一一指定.这些功能使的MATLAB易学易用,使用者可专心致力於撰写程式,而不必被软体枝节问题所干扰。

若不想让MATLAB每次都显示运算结果,只需在运算式最後加上分号(;)即可,如下例:

y = sin(10)*exp(-0.3*4^2);

若要显示变数y的值,直接键入y即可:

>>y

y =-0.0045

在上例中,sin是正弦函数,exp是指数函数,这些都是MATLAB常用到的数学函数。

下表即为MATLAB常用的基本数学函数及三角函数:

小整理:MATLAB常用的基本数学函数

abs(x):纯量的绝对值或向量的长度

angle(z):复 数z的相角(Phase angle)

sqrt(x):开平方

real(z):复数z的实部

imag(z):复数z的虚 部

conj(z):复数z的共轭复数

round(x):四舍五入至最近整数

fix(x):无论正负,舍去小数至最近整数

floor(x):地板函数,即舍去正小数至最近整数

ceil(x):天花板函数,即加入正小数至最近整数

rat(x):将实数x化为分数表示

rats(x):将实数x化为多项分数展开

sign(x):符号函数 (Signum function)。

当x<0时,sign(x)=-1;

当x=0时,sign(x)=0;

当x>0时,sign(x)=1。

> 小整理:MATLAB常用的三角函数

sin(x):正弦函数

cos(x):馀弦函数

tan(x):正切函数

asin(x):反正弦函数

acos(x):反馀弦函数

atan(x):反正切函数

atan2(x,y):四象限的反正切函数

sinh(x):超越正弦函数

cosh(x):超越馀弦函数

tanh(x):超越正切函数

asinh(x):反超越正弦函数

acosh(x):反超越馀弦函数

atanh(x):反超越正切函数

变数也可用来存放向量或矩阵,并进行各种运算,如下例的列向量(Row vector)运算:

x = [1 3 5 2];

y = 2*x+1

y = 3 7 11 5

小提示:变数命名的规则

1.第一个字母必须是英文字母 2.字母间不可留空格 3.最多只能有19个字母,MATLAB会忽略多馀字母

我们可以随意更改、增加或删除向量的元素:

y(3) = 2 % 更改第三个元素

y =3 7 2 5

y(6) = 10 % 加入第六个元素

y = 3 7 2 5 0 10

y(4) = [] % 删除第四个元素,

y = 3 7 2 0 10

在上例中,MATLAB会忽略所有在百分比符号(%)之後的文字,因此百分比之後的文字均可视为程式的注解(Comments)。MATLAB亦可取出向量的一个元素或一部份来做运算:

x(2)*3+y(4) % 取出x的第二个元素和y的第四个元素来做运算

ans = 9

y(2:4)-1 % 取出y的第二至第四个元素来做运算

ans = 6 1 -1

在上例中,2:4代表一个由2、3、4组成的向量

若对MATLAB函数用法有疑问,可随时使用help来寻求线上支援(on-line help):help linspace

小整理:MATLAB的查询命令

help:用来查询已知命令的用法。例如已知inv是用来计算反矩阵,键入help inv即可得知有关inv命令的用法。(键入help help则显示help的用法,请试看看!) lookfor:用来寻找未知的命令。例如要寻找计算反矩阵的命令,可键入 lookfor inverse,MATLAB即会列出所有和关键字inverse相关的指令。找到所需的命令後 ,即可用help进一步找出其用法。(lookfor事实上是对所有在搜寻路径下的M档案进行关键字对第一注解行的比对,详见後叙。)

将列向量转置(Transpose)後,即可得到行向量(Column vector):

z = x'

z = 4.0000

5.2000

6.4000

7.6000

8.8000

10.0000

不论是行向量或列向量,我们均可用相同的函数找出其元素个数、最大值、最小值等:

length(z) % z的元素个数

ans = 6

max(z) % z的最大值

ans = 10

min(z) % z的最小值

ans = 4

小整理:适用於向量的常用函数有:

min(x): 向量x的元素的最小值

max(x): 向量x的元素的最大值

mean(x): 向量x的元素的平均值

median(x): 向量x的元素的中位数

std(x): 向量x的元素的标准差

diff(x): 向量x的相邻元素的差

sort(x): 对向量x的元素进行排序(Sorting)

length(x): 向量x的元素个数

norm(x): 向量x的欧氏(Euclidean)长度

sum(x): 向量x的元素总和

prod(x): 向量x的元素总乘积

cumsum(x): 向量x的累计元素总和

cumprod(x): 向量x的累计元素总乘积

dot(x, y): 向量x和y的内 积

cross(x, y): 向量x和y的外积 (大部份的向量函数也可适用於矩阵,详见下述。)

若要输入矩阵,则必须在每一列结尾加上分号(;),如下例:

A = [1 2 3 4; 5 6 7 8; 9 10 11 12];

A =

1 2 3 4

5 6 7 8

9 10 11 12

同样地,我们可以对矩阵进行各种处理:

A(2,3) = 5 % 改变位於第二行,第三列的元素值

A =

1 2 3 4

5 6 5 8

9 10 11 12

B = A(2,1:3) % 取出部份矩阵B

B = 5 6 5

A = [A B'] % 将B转置後以行向量并入A

A =

1 2 3 4 5

5 6 5 8 6

9 10 11 12 5

A(:, 2) = [] % 删除第二列(:代表所有行)

A =

1 3 4 5

5 5 8 6

9 11 12 5

A = [A; 4 3 2 1] % 加入第四行

A =

1 3 4 5

5 5 8 6

9 11 12 5

4 3 2 1

A([1 4], :) = [] % 删除第一和第四行(:代表所有列)

A =

5 5 8 6

9 11 12 5

这几种矩阵处理的方式可以相互叠代运用,产生各种意想不到的效果,就看各位的巧思和创意。

小提示:在MATLAB的内部资料结构中,每一个矩阵都是一个以行为主(Column-oriented )的阵列(Array)因此对於矩阵元素的存取,我们可用一维或二维的索引(Index)来定址。举例来说,在上述矩阵A中,位於第二行、第三列的元素可写为A(2,3) (二维索引)或A(6)(一维索引,即将所有直行进行堆叠後的第六个元素)。

此外,若要重新安排矩阵的形状,可用reshape命令:

B = reshape(A, 4, 2) % 4是新矩阵的行数,2是新矩阵的列数

B =

5 8

9 12

5 6

11 5

小提示: A(:)就是将矩阵A每一列堆叠起来,成为一个列向量,而这也是MATLAB变数的内部储存方式。以前例而言,reshape(A, 8, 1)和A(:)同样都会产生一个8x1的矩阵。

MATLAB可在同时执行数个命令,只要以逗号或分号将命令隔开:

x = sin(pi/3); y = x^2; z = y*10,

z =

7.5000

若一个数学运算是太长,可用三个句点将其延伸到下一行:

z = 10*sin(pi/3)* ...

sin(pi/3);

若要检视现存於工作空间(Workspace)的变数,可键入who:

who

Your variables are:

testfile x

这些是由使用者定义的变数。若要知道这些变数的详细资料,可键入:

whos

Name Size Bytes Class

A 2x4 64 double array

B 4x2 64 double array

ans 1x1 8 double array

x 1x1 8 double array

y 1x1 8 double array

z 1x1 8 double array

Grand total is 20 elements using 160 bytes

使用clear可以删除工作空间的变数:

clear A

A

??? Undefined function or variable 'A'.

另外MATLAB有些永久常数(Permanent constants),虽然在工作空间中看不 到,但使用者可直接取用,例如:

pi

ans = 3.1416

下表即为MATLAB常用到的永久常数。

小整理:MATLAB的永久常数 i或j:基本虚数单位

eps:系统的浮点(Floating-point)精确度 (2.2204e-016)

inf:无限大, 例如1/0 nan或NaN:非数值(Not a number) ,例如0/0

pi:圆周率 p(= 3.1415926...)

realmax:系统所能表示的最大数值 (1.7977e+308)

realmin:系统所能表示的最小数值 (2.2251e-308)

nargin: 函数的输入引数个数 (0)

nargout: 函数的输出引数个数 (2.0578e+009)

最后

以上就是霸气帅哥为你收集整理的matlab基本运算与函数,matlab基本运算与函数使用教程的全部内容,希望文章能够帮你解决matlab基本运算与函数,matlab基本运算与函数使用教程所遇到的程序开发问题。

如果觉得靠谱客网站的内容还不错,欢迎将靠谱客网站推荐给程序员好友。

本图文内容来源于网友提供,作为学习参考使用,或来自网络收集整理,版权属于原作者所有。
点赞(45)

评论列表共有 0 条评论

立即
投稿
返回
顶部