我是靠谱客的博主 忧伤月光,最近开发中收集的这篇文章主要介绍由系统函数求零极点图、频率响应(幅频特性、相频特性)的 Matlab 和 Python 方法由系统函数求零极点、频率响应(幅频特性、相频特性)的 Matlab 和 Python 方法,觉得挺不错的,现在分享给大家,希望可以做个参考。

概述

由系统函数求零极点、频率响应(幅频特性、相频特性)的 Matlab 和 Python 方法

Author: Sijin Yu

文章目录

  • 由系统函数求零极点、频率响应(幅频特性、相频特性)的 Matlab 和 Python 方法
    • 1. Matlab
      • 1.1 tf2zpk() 函数
      • 1.2 zplane() 函数
      • 1.3 freqz() 函数
      • 1.4 Example
    • 2. Python
      • 2.1 scipy.signal.tf2zpk() 函数
      • 2.2 zplane() 函数的自定义
      • 2.3 scipy.signal.freqz() 函数
      • 2.4 Example
    • 3. 总结

本文以离散信号为例.

1. Matlab

1.1 tf2zpk() 函数

使用 tf2zpk() 函数可以获得频率响应的零极点.
matlab 的官方文档对 tf2zpk() 函数的用法介绍如下.
tf2zpk() 的官方介绍.
即, 给定系统函数
H ( z ) = b 0 + b 1 z − 1 + ⋯ + b n z − n a 0 + a 1 z − 1 + ⋯ + a n z − m = ∑ i = 0 n b i z − i ∑ i = 0 m a i z − i , H(z)=frac{b_0+b_1z^{-1}+cdots+b_nz^{-n}}{a_0+a_1z^{-1}+cdots+a_nz^{-m}}=frac{sum^{n}_{i=0}b_iz^{-i}}{sum^m_{i=0}a_iz^{-i}}, H(z)=a0+a1z1++anzmb0+b1z1++bnzn=i=0maizii=0nbizi,
令序列 b = [ b 0 , b 1 , ⋯   , b n ] , a = [ a 0 , a 1 , ⋯   , a m ] b=[b_0,b_1,cdots,b_n],a=[a_0,a_1,cdots,a_m] b=[b0,b1,,bn],a=[a0,a1,,am]. 系统函数的零极点表达式为
H ( z ) = k ( z − z 1 ) ( z − z 2 ) ⋯ ( z − z N ) ( z − p 1 ) ( z − p 2 ) ⋯ ( z − p M ) = k ∏ i = 1 N ( z − z i ) ∏ i = 1 M ( z − p i ) , H(z)=kfrac{(z-z_1)(z-z_2)cdots(z-z_N)}{(z-p_1)(z-p_2)cdots(z-p_M)}=kfrac{prod^N_{i=1}(z-z_i)}{prod^M_{i=1}(z-p_i)}, H(z)=k(zp1)(zp2)(zpM)(zz1)(zz2)(zzN)=ki=1M(zpi)i=1N(zzi),
序列 z = [ z 1 , z 2 , ⋯   , z N ] , p = [ p 1 , p 2 , ⋯   , p M ] z=[z_1,z_2,cdots,z_N],p=[p_1,p_2,cdots,p_M] z=[z1,z2,,zN],p=[p1,p2,,pM] 分别表示 H ( z ) H(z) H(z) 的零点和极点. 函数 [z, p, k]=tf2zpk(b, a) 返回以 ba 序列为参数的系统方程的零点序列 z、极点序列 p、增益 k.

1.2 zplane() 函数

matlab 的官方文档对 zplane() 函数的用法介绍如下.
zplane() 的官方介绍.
zplane() 有两个主要用法:

  1. zplane(z, p). 传入参数为零点序列 z 和极点序列 p. 直接作零极点图.
  2. zplane(b, a). 传入参数为系统函数的参数 ba. 函数自动根据系统函数作零极点图.

在下文我们会验证这两种做法是等效的.

1.3 freqz() 函数

matlab 的官方文档对 freqz() 函数的用法介绍如下.
freqz() 的官方介绍.
即, 给定系统函数
H ( z ) = b 0 + b 1 z − 1 + ⋯ + b n z − n a 0 + a 1 z − 1 + ⋯ + a n z − m = ∑ i = 0 n b i z − i ∑ i = 0 m a i z − i , H(z)=frac{b_0+b_1z^{-1}+cdots+b_nz^{-n}}{a_0+a_1z^{-1}+cdots+a_nz^{-m}}=frac{sum^{n}_{i=0}b_iz^{-i}}{sum^m_{i=0}a_iz^{-i}}, H(z)=a0+a1z1++anzmb0+b1z1++bnzn=i=0maizii=0nbizi,
令序列 b = [ b 0 , b 1 , ⋯   , b n ] , a = [ a 0 , a 1 , ⋯   , a m ] b=[b_0,b_1,cdots,b_n],a=[a_0,a_1,cdots,a_m] b=[b0,b1,,bn],a=[a0,a1,,am]. 函数 [h, w]=freqz(b, a) 返回频率响应序列 h 和频率序列 w. h 为复序列, 模 abs(h) 为幅频响应序列, 角 angle(h) 为相频响应序列.

1.4 Example

作下面系统函数的零极点图、幅频特性曲线、相频特性曲线.
H ( z ) = 0.5 z − 1 − 0.72 z − 3 3 + 2 z − 1 − 0.87 z − 2 . H(z)=frac{0.5z^{-1}-0.72z^{-3}}{3+2z^{-1}-0.87z^{-2}}. H(z)=3+2z10.87z20.5z10.72z3.
代码如下:

% test.m
% author: Sijin Yu
clear;
figure(1);
b = [0 0.5 0 -0.72];
a = [3 2 0.87];
[z, p, k] = tf2zpk(b, a);
% -----零极点----- 
subplot(2, 2, 1);
zplane(z, p);
title('zplane(z, p)');
subplot(2, 2, 2);
zplane(b, a);
title('zplane(b, a)');
% -----幅频特性----- 
[h, w] = freqz(b, a);
H_abs = abs(h);
subplot(2, 2, 3);
plot(w, 20 * log10(H_abs)); % 以分贝为单位
title('幅频特性');
% -----相频特性-----
H_angle = angle(h);
subplot(2, 2, 4);
plot(w, H_angle);
title('相频特性');

结果如下:
Matlab结果

2. Python

2.1 scipy.signal.tf2zpk() 函数

该函数依赖 scipy 库, 使用前应执行 pip install scipy.
scipy 的官方文档介绍如下.
scipy.signal.tf2zpk() 的官方文档.
其用法和 matlab 中的 tf2zpk() 用法非常相似, 不多赘述.

2.2 zplane() 函数的自定义

Python 中没有直接实现 matlab 中 zplane() 函数的功能. (至少我没找到, 有知道的大佬欢迎留言.) 因此我自己实现了 zplane() 函数.
函数定义的代码如下

import matplotlib.pyplot as plt
import numpy as np
from matplotlib.patches import Circle

def zplane(z, p, fig=None, ax=None):
    if fig==None or ax==None:
        fig, ax = plt.subplots(figsize=(4, 4))
    circle = Circle(xy = (0.0, 0.0), radius = 1, alpha = 0.9, facecolor = 'white')
    # 作单位园
    theta = np.linspace(0, 2 * np.pi, 200)
    x = np.cos(theta)
    y = np.sin(theta)
    ax.add_patch(circle)
    ax.plot(x, y, color="darkred", linewidth=2)
    lim = max(max(z), max(p), 1) + 1
    # 控制坐标轴范围
    plt.xlim([-lim, lim])
    plt.ylim([-lim, lim])
    # 作零极点
    for i in z:
        ax.plot(np.real(i),np.imag(i), 'bo') 
    for i in p:
        ax.plot(np.real(i),np.imag(i), 'bx') 

2.3 scipy.signal.freqz() 函数

scipy 库官方文档对其描述如下.
(由于内容过长, 不截图)

scipy.signal.freqz(b, a=1, worN=512, whole=False, plot=None, fs=6.283185307179586, include_nyquist=False)

Parameters:

  • b: array_like
    Numerator of a linear filter. If b has dimension greater than 1, it is assumed that the coefficients are stored in the first dimension, and b.shape[1:], a.shape[1:], and the shape of the frequencies array must be compatible for broadcasting.
  • a: array_like
    Denominator of a linear filter. If b has dimension greater than 1, it is assumed that the coefficients are stored in the first dimension, and b.shape[1:], a.shape[1:], and the shape of the frequencies array must be compatible for broadcasting.
  • worN: {None, int, array_like}, optional
    If a single integer, then compute at that many frequencies (default is N=512). This is a convenient alternative to: np.linspace(0, fs if whole else fs/2, N, endpoint=include_nyquist).
    Using a number that is fast for FFT computations can result in faster computations (see Notes).
    If an array_like, compute the response at the frequencies given. These are in the same units as fs.
  • whole: bool, optional
    Normally, frequencies are computed from 0 to the Nyquist frequency, fs/2 (upper-half of unit-circle). If whole is True, compute frequencies from 0 to fs. Ignored if worN is array_like.
  • plot: callable
    A callable that takes two arguments. If given, the return parameters w and h are passed to plot. Useful for plotting the frequency response inside freqz.
  • fs: float, optional
    The sampling frequency of the digital system. Defaults to 2*pi radians/sample (so w is from 0 to pi).
  • include_nyquist: bool, optional
    If whole is False and worN is an integer, setting include_nyquist to True will include the last frequency (Nyquist frequency) and is otherwise ignored.

Returns:

  • w: ndarray
    The frequencies at which h was computed, in the same units as fs. By default, w is normalized to the range [0, pi) (radians/sample).
  • h: ndarray
    The frequency response, as complex numbers.

2.4 Example

我们用回 1.4 中的例子.
代码如下:

# test.py
# author: Sijin Yu
import matplotlib.pyplot as plt
import numpy as np
from scipy import signal
from matplotlib.patches import Circle

def zplane(z, p, fig=None, ax=None):
    if fig==None or ax==None:
        fig, ax = plt.subplots(figsize=(4, 4))
    circle = Circle(xy = (0.0, 0.0), radius = 1, alpha = 0.9, facecolor = 'white')
    # 作单位园
    theta = np.linspace(0, 2 * np.pi, 200)
    x = np.cos(theta)
    y = np.sin(theta)
    ax.add_patch(circle)
    ax.plot(x, y, color="darkred", linewidth=2)
    lim = max(max(z), max(p), 1) + 1
    # 控制坐标轴范围
    plt.xlim([-lim, lim])
    plt.ylim([-lim, lim])
    # 作零极点
    for i in z:
        ax.plot(np.real(i),np.imag(i), 'bo') 
    for i in p:
        ax.plot(np.real(i),np.imag(i), 'bx') 


b = np.array([0, 0.5, 0, -0.72])
a = np.array([3, 2, 0.87])
# -----零极点图-----
z, p, k = signal.tf2zpk(b, a)
fig = plt.figure(figsize=(10, 10))
ax = fig.add_subplot(2, 2, 1)
zplane(z, p, fig=fig, ax=ax)
# -----幅频特性-----
w, h = signal.freqz(b, a)
ax = fig.add_subplot(2, 2, 3)
ax.plot(w, 20 * np.log10(abs(h))) # 以分贝为单位
# -----相频特性-----
ax = fig.add_subplot(2, 2, 4)
ax.plot(w, np.angle(h))
fig.savefig("result_py.jpg")

结果如下:
请添加图片描述

3. 总结

对比 matlab 的图和 Python 的图, 发现为原点的极点 Python 没有画出, 而 matlab 画出. 其余结果 matlab 与 Python 一致.

最后

以上就是忧伤月光为你收集整理的由系统函数求零极点图、频率响应(幅频特性、相频特性)的 Matlab 和 Python 方法由系统函数求零极点、频率响应(幅频特性、相频特性)的 Matlab 和 Python 方法的全部内容,希望文章能够帮你解决由系统函数求零极点图、频率响应(幅频特性、相频特性)的 Matlab 和 Python 方法由系统函数求零极点、频率响应(幅频特性、相频特性)的 Matlab 和 Python 方法所遇到的程序开发问题。

如果觉得靠谱客网站的内容还不错,欢迎将靠谱客网站推荐给程序员好友。

本图文内容来源于网友提供,作为学习参考使用,或来自网络收集整理,版权属于原作者所有。
点赞(42)

评论列表共有 0 条评论

立即
投稿
返回
顶部