我是靠谱客的博主 稳重电灯胆,最近开发中收集的这篇文章主要介绍Matlab S函数求解PD控制的二阶微分或者二阶状态方程,觉得挺不错的,现在分享给大家,希望可以做个参考。

概述

近几天时间比较充足,便学习一下S函数求解微分方程。其求解方程如下:
D ( q ) q ¨ + C ( q , q ˙ ) q ˙ + G ( q ) + ω = τ Dleft( q right)ddot q + C(q,dot q)dot q{rm{ + G}}left( q right) + omega = tau D(q)q¨+C(q,q˙)q˙+G(q)+ω=τ (2.7)
ω = d 1 + d 2 ∥ e ∥ + d 3 ∥ e ˙ ∥ omega = {d_1} + {d_2}left| e right| + {d_3}left| {dot e} right| ω=d1+d2e+d3e˙ (2.10)
y = e ˙ + γ e y = dot e + gamma e y=e˙+γe (2.11)
q ˙ r = q ˙ d − γ e {dot q_r} = {dot q_d} - gamma e q˙r=q˙dγe (2.12)
其中 e = q − q d e = q - {q_d} e=qqd e ˙ = q ˙ − q ˙ d dot e = dot q - {dot q_d} e˙=q˙q˙d q q q是实际输出变量, q d q_d qd是期望输出变量
τ = − K p e − K v e ˙ + ϕ ( q , q ˙ , q ˙ r , q ¨ r ) P ^ + u tau {rm{ = - }}{K_p}e - {K_v}dot e + phi left( {q,dot q,{{dot q}_r},{{ddot q}_r}} right)hat P + u τ=KpeKve˙+ϕ(q,q˙,q˙r,q¨r)P^+u (2.16)
u = [ u 1 ⋯ u n ] T , u i = − ( d 1 + d 2 ∥ e ∥ + d 3 ∥ e ˙ ∥ ) s g n ( y i ) u{rm{ = }}{left[ {{u_1} cdots {u_n}} right]^T},{u_i} = - ({d_1} + {d_2}left| e right| + {d_3}left| {dot e} right|){mathop{rm sgn}} left( {{y_i}} right) u=[u1un]T,ui=(d1+d2e+d3e˙)sgn(yi) (2.17)
P ^ ˙ = − Γ ϕ T ( q , q ˙ , q ˙ r , q ¨ r ) y dot { hat {P} }= - Gamma {phi ^T}(q,dot q,{dot q_r},{ddot q_r})y P^˙=ΓϕT(q,q˙,q˙r,q¨r)y (2.18)
K p = K p 1 + K p 2 B p ( e ) , K v = K v 1 + K v 2 B ( e ˙ ) {K_p} = {K_{p1}} + {K_{p2}}{B_p}left( e right),{K_v} = {K_{v1}} + {K_{v2}}Bleft( {dot e} right) Kp=Kp1+Kp2Bp(e),Kv=Kv1+Kv2B(e˙)
K p 1 = d i a g ( k p 11 , k p 12 , ⋯   , k p 1 n ) , K p 2 = d i a g ( k p 21 , k p 22 , ⋯   , k p 2 n ) {K_{p1}} = diagleft( {{k_{p11}},{k_{p12}}, cdots ,{k_{p1n}}} right),{K_{p2}} = diagleft( {{k_{p21}},{k_{p22}}, cdots ,{k_{p2n}}} right) Kp1=diag(kp11,kp12,,kp1n),Kp2=diag(kp21,kp22,,kp2n)
K v 1 = d i a g ( k v 11 , k v 12 , ⋯   , k v 1 n ) , K v 2 = d i a g ( k v 21 , k v 22 , ⋯   , k v 2 n ) {K_{v1}} = diagleft( {{k_{v11}},{k_{v12}}, cdots ,{k_{v1n}}} right),{K_{v2}} = diagleft( {{k_{v21}},{k_{v22}}, cdots ,{k_{v2n}}} right) Kv1=diag(kv11,kv12,,kv1n),Kv2=diag(kv21,kv22,,kv2n)
B p ( e ) = d i a g ( 1 a 1 + ∣ e 1 ∣ , 1 a 2 + ∣ e 2 ∣ , ⋯   , 1 a n + ∣ e n ∣ ) {B_p}left( e right) = diagleft( {frac{1}{{{a_1} + left| {{e_1}} right|}},frac{1}{{{a_2} + left| {{e_2}} right|}}, cdots ,frac{1}{{{a_n} + left| {{e_n}} right|}}} right) Bp(e)=diag(a1+e11,a2+e21,,an+en1)
B v ( e ) = d i a g ( 1 β 1 + ∣ e ˙ 1 ∣ , 1 β 2 + ∣ e ˙ 2 ∣ , ⋯   , 1 β n + ∣ e ˙ n ∣ ) {B_v}left( e right) = diagleft( {frac{1}{{{beta _1} + left| {{{dot e}_1}} right|}},frac{1}{{{beta _2} + left| {{{dot e}_2}} right|}}, cdots ,frac{1}{{{beta _n} + left| {{{dot e}_n}} right|}}} right) Bv(e)=diag(β1+e˙11,β2+e˙21,,βn+e˙n1)
仿真参数设置如下:
D 11 ( q 2 ) = ( m 1 + m 2 ) r 1 2 + m 2 r 2 2 + 2 m 2 r 1 r 2 c o s q 2 D_{11}(q_2)=(m_1+m_2)r_1^2+m_2r_2^2+2m_2r_1r_2cosq_2 D11(q2)=(m1+m2)r12+m2r22+2m2r1r2cosq2
D 12 ( q 2 ) = m 2 r 2 2 + m 2 r 1 r 2 c o s q 2 D_{12}(q_2)=m_2r_2^2 + m_2r_1r_2cosq_2 D12(q2)=m2r22+m2r1r2cosq2
D 22 ( q 2 ) = m 2 r 2 2 D_{22}(q_2)=m_2r_2^2 D22(q2)=m2r22
D = [ D 11 , D 12 ; D 12 , D 22 ] D = [D_{11},D_{12};D_{12},D_{22}] D=[D11,D12;D12,D22]
C 12 ( q 2 ) = m 2 r 1 r 2 s i n q 2 C_{12}(q_2)=m_2r_1r_2sinq_2 C12(q2)=m2r1r2sinq2
C = [ − C 12 q ˙ 2 , − C 12 ( q ˙ 1 + q ˙ 2 ) ; C 12 q ˙ 1 , 0 ] C=[-C_{12}dot q_2,-C_{12}(dot q_1 + dot q_2);C_{12}dot q_1, 0] C=[C12q˙2,C12(q˙1+q˙2);C12q˙1,0]
G 1 ( q 1 , q 2 ) = ( m 1 + m 2 ) r 1 c o s q 2 + m 2 r 2 c o s ( q 1 + q 2 ) G_1(q_1,q_2)=(m_1+m_2)r_1cosq_2+m_2r_2cos(q_1+q_2) G1(q1,q2)=(m1+m2)r1cosq2+m2r2cos(q1+q2)
G 2 ( q 1 , q 2 ) = m 1 r 2 c o s ( q 1 + q 2 ) G_2(q_1,q_2)=m_1r_2cos(q_1+q_2) G2(q1,q2)=m1r2cos(q1+q2)
G = [ G 1 g ; G 2 g ] G=[G_1g;G_2g] G=[G1g;G2g]
ϕ 11 = q ¨ 1 r + e 1 c o s q 2 phi_{11}=ddot q_{1r}+e_1cosq_2 ϕ11=q¨1r+e1cosq2
ϕ 12 = q ¨ 1 r + q ¨ 2 r phi_{12}=ddot q_{1r}+ddot q_{2r} ϕ12=q¨1r+q¨2r
ϕ 13 = 2 q ¨ 1 r c o s q 2 + q ¨ 2 r c o s q 2 − q ˙ 2 q ˙ 1 r s i n q 2 − ( q ˙ 1 + q ˙ 2 ) q ˙ 2 r s i n q 2 + e 1 c o s ( q 1 + q 2 ) phi_{13}=2ddot q_{1r}cosq_2+ddot q_{2r}cosq_2-dot q_2 dot q_{1r}sinq_2-(dot q_1 + dot q_2)dot q_{2r}sinq_2+e_1cos(q_1+q_2) ϕ13=2q¨1rcosq2+q¨2rcosq2q˙2q˙1rsinq2(q˙1+q˙2)q˙2rsinq2+e1cos(q1+q2)
ϕ 21 = 0 phi_{21}=0 ϕ21=0
ϕ 22 = ϕ 12 phi_{22}=phi_{12} ϕ22=ϕ12
ϕ 23 = q ˙ 1 q ˙ 1 r s i n q 2 + q ¨ 1 r c o s q 2 + e 1 c o s ( q 1 + q 2 ) phi_{23}=dot q_1 dot q_{1r}sinq_2+ddot q_{1r}cosq_2+e_1cos(q_1+q_2) ϕ23=q˙1q˙1rsinq2+q¨1rcosq2+e1cos(q1+q2)
e 1 = g / r 1 , g = 9.8 e_1=g/r_1,g=9.8 e1=g/r1,g=9.8
r 1 = 1 , r 2 = 0.8 , m 1 = 0.5 , m 2 = 0.5 , d 1 = 2 , d 2 = 3 , d 3 = 6 , ω = d 1 + d 2 ∥ e ∥ + d 3 ∥ e ˙ ∥ r_1=1,r_2=0.8,m_1=0.5,m_2=0.5,d_1=2,d_2=3,d_3=6,omega=d_1+d_2left| { e} right|+d_3left| {dot e} right| r1=1,r2=0.8,m1=0.5,m2=0.5,d1=2,d2=3,d3=6,ω=d1+d2e+d3e˙
q 1 d = s i n ( 2 ∗ π ∗ t ) , q 2 d = s i n ( 2 ∗ π ∗ t ) q_{1d}=sin(2*pi*t),q_{2d}=sin(2*pi*t) q1d=sin(2πt),q2d=sin(2πt)
[ q 1 ; q ˙ 1 ; q 2 ; q ˙ 2 ] = [ 0.1 ; 0 ; 0.1 ; 0 ] [q_1;dot q_1;q_2;dot q_2]=[0.1;0;0.1;0] [q1;q˙1;q2;q˙2]=[0.1;0;0.1;0]
K p 1 = d i a g ( 180 , 190 ) , K p 2 = d i a g ( 150 , 150 ) K_{p1}=diag(180,190),K_{p2}=diag(150,150) Kp1=diag(180,190),Kp2=diag(150,150)
K v 1 = d i a g ( 180 , 180 ) , K v 2 = d i a g ( 150 , 150 ) K_{v1}=diag(180,180),K_{v2}=diag(150,150) Kv1=diag(180,180),Kv2=diag(150,150)
α i = β i = 1 ( i = 1 , 2 ) , γ = 5 , Γ = [ 5   0   0 ; 0   5   0 ; 0   0   5 ] alpha_i=beta_i =1(i=1,2),gamma=5,Gamma=[5space0space 0;0 space5 space0;0space 0 space5] αi=βi=1(i=1,2),γ=5,Γ=[5 0 0;0 5 0;0 0 5]
编程分析:等式2.7右边写成一个S函数。首先分析输入参数个数,由于等式2.16中有 q , q ˙ , q d , q ˙ d , q ¨ d q,dot q,q_d,dot q_d,ddot q_d q,q˙,qd,q˙d,q¨d五个变量,并且每个变量是二维的所以输入参数设置为10。输出变量 τ tau τ是个二维的, p p p是三维的,所以右边S函数的输出设置为5。直接反馈设置为1中间需要求解公式2.18,所以此函数需要用到微分模块sys=mdlDerivatives(t,x,u),所以连续变量状态数设置为3。

等式2.7左边的S函数编写,求解过程中需要 q , q ˙ d , τ q_,dot q_d,tau q,q˙d,τ三个变量,所以输入个数设置6,输出变量 q , q ˙ q,dot q q,q˙,所以设置为4。等式2.7左边是个二维二阶微分方程求解,所以连续状态设置为4。
由于CSDN粘贴Matlab代码不方便,具体的函数编写放在相应的附件中。https://download.csdn.net/download/cswh876908060/12155057。如需代写,或者咨询,请联系:
在这里插入图片描述

最后

以上就是稳重电灯胆为你收集整理的Matlab S函数求解PD控制的二阶微分或者二阶状态方程的全部内容,希望文章能够帮你解决Matlab S函数求解PD控制的二阶微分或者二阶状态方程所遇到的程序开发问题。

如果觉得靠谱客网站的内容还不错,欢迎将靠谱客网站推荐给程序员好友。

本图文内容来源于网友提供,作为学习参考使用,或来自网络收集整理,版权属于原作者所有。
点赞(62)

评论列表共有 0 条评论

立即
投稿
返回
顶部