我是靠谱客的博主 爱笑白开水,这篇文章主要介绍RISC CPU处理器五级流水线 IF ID EX MEM WB 的编写@计算机组成原理,现在分享给大家,希望可以做个参考。

大二做的一个计算机组成原理课程设计,用verilog实现一个五级流水线的CPU。
主要实现了加减、比较、左移右移、条件跳转等的精简指令集。

复制代码
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
`timescale 1ns / 1ps `define idle 1'b0 `define exec 1'b1 //Data Transfer & Arithmetic `define NOP 5'b00000 `define HALT 5'b00001 `define LOAD 5'b00010 `define STORE 5'b00011 `define LDIH 5'b10000 `define ADD 5'b01000 `define ADDI 5'b01001 `define ADDC 5'b10001 `define SUB 5'b01010 `define SUBI 5'b01011 `define SUBC 5'b10010 `define CMP 5'b01100 //Logical/Shift `define AND 5'b01101 `define OR 5'b01110 `define XOR 5'b01111 `define SLL 5'b00100 `define SRL 5'b00110 `define SLA 5'b00101 `define SRA 5'b00111 //Control `define JUMP 5'b11000 `define JMPR 5'b11001 `define BZ 5'b11010 `define BNZ 5'b11011 `define BN 5'b11100 `define BNN 5'b11101 `define BC 5'b11110 `define BNC 5'b11111 //************************************************// //* You need to complete the design below *// //* by yourself according to your operation set *// //************************************************// module CPU( input [15:0]i_datain, input [15:0]d_datain, input clock, input reset, input enable, input start, //input [3:0]select_y, //output reg [15:0]y, output [7:0]i_addr, output [7:0]d_addr, output [15:0]d_dataout, output d_we ); reg [15:0]gr[7:0]; reg state; reg next_state; reg [7:0]pc; reg [15:0]id_ir; reg [15:0]ex_ir; reg [15:0]mem_ir; reg [15:0]wb_ir; reg [15:0]reg_A; reg [15:0]reg_B; reg [15:0]reg_C; reg [15:0]reg_C1; reg [15:0]smdr; reg [15:0]smdr1; wire [15:0]ALUo; reg nf,zf,dw; wire cf; assign i_addr = pc; assign d_addr = reg_C[7:0]; assign d_we = dw; assign d_dataout = smdr1; //************* CPU control *************// always @(posedge clock) begin if (!reset) state <= `idle; else state <= next_state; end always @(*) begin case (state) `idle : if ((enable == 1'b1) && (start == 1'b1)) next_state <= `exec; else next_state <= `idle; `exec : if ((enable == 1'b0) || (wb_ir[15:11] == `HALT)) next_state <= `idle; else next_state <= `exec; endcase end //************* IF *************// always @(posedge clock or negedge reset) begin if (!reset) begin id_ir <= 0; pc <= 0; end else if (state ==`exec) begin id_ir <= i_datain; if((mem_ir[15:11] == `JUMP) || (mem_ir[15:11] == `JMPR) || ((mem_ir[15:11] == `BZ) && (zf == 1'b1)) || ((mem_ir[15:11] == `BNZ) && (zf == 1'b0)) || ((mem_ir[15:11] == `BN) && (nf == 1'b1)) || ((mem_ir[15:11] == `BNN) && (nf == 1'b0)) || ((mem_ir[15:11] == `BC) && (cf == 1'b1)) || ((mem_ir[15:11] == `BNC) && (cf == 1'b0))) pc <= reg_C[7:0];//if jumped else pc <= pc + 1;//if not jumped end end //************* ID *************// always @(posedge clock or negedge reset) begin if (!reset) begin ex_ir<=0; reg_A<=0; reg_B<=0; smdr<=0; end else if (state == `exec) begin ex_ir <= id_ir; if ((id_ir[15:11] == `LDIH) || (id_ir[15:11] == `ADDI) || (id_ir[15:11] == `SUBI) || (id_ir[15:11] == `JMPR) || (id_ir[15:11] == `BZ) || (id_ir[15:11] == `BNZ) || (id_ir[15:11] == `BN) || (id_ir[15:11] == `BNN) || (id_ir[15:11] == `BC) || (id_ir[15:11] == `BNC)) reg_A <= gr[(id_ir[10:8])];//r1 else if(id_ir[15:11] == `JUMP) reg_A <= gr[(id_ir[7:0])];//val2+val3 else reg_A <= gr[id_ir[6:4]];//r2 /// if ((id_ir[15:11] == `LOAD) || (id_ir[15:11] == `STORE) || (id_ir[15:11] == `SLL) || (id_ir[15:11] == `SRL) || (id_ir[15:11] == `SLA) || (id_ir[15:11] == `SRA)) reg_B <= {12'b0000_0000_0000, id_ir[3:0]};//val3 else if (id_ir[15:11] == `STORE) begin reg_B <= {12'b0000_0000_0000, id_ir[3:0]};//val3 smdr <= gr[id_ir[10:8]]; end else if ((id_ir[15:11] == `ADDI) || (id_ir[15:11] == `SUBI) || (id_ir[15:11] == `BZ) || (id_ir[15:11] == `BNZ) || (id_ir[15:11] == `BN) || (id_ir[15:11] == `BNN) || (id_ir[15:11] == `BC) || (id_ir[15:11] == `BNC) || (id_ir[15:11] == `JMPR)) reg_B <= {8'b0000_0000,id_ir[7:0]};//{val2,val3} else if (id_ir[15:11] == `JUMP) reg_B <= 0;//0 else if ((id_ir[15:11] == `ADDC) || (id_ir[15:11] == `SUBC)) reg_B <= gr[id_ir[2:0]]+cf;//r3+cf else if (id_ir[15:11] == `LDIH) reg_B <= {id_ir[7:0],8'b0000_0000};//{val2,val3,8'b0000_0000} else reg_B <= gr[id_ir[2:0]]; end end ALU alu( .a(reg_A), .b(reg_B), .ir(ex_ir[15:11]), .ALUo(ALUo), .cf(cf) ); //************* EX *************// always @(posedge clock or negedge reset) begin if (!reset) begin reg_C<=0; mem_ir<=0; zf<=0; nf<=0; dw<=0; smdr1<=0; end else if (state == `exec) begin mem_ir <= ex_ir; reg_C <= ALUo; if ((ex_ir[15:11] == `ADD) || (ex_ir[15:11] == `ADDI) || (ex_ir[15:11] == `ADDC) || (ex_ir[15:11] == `SUB) || (ex_ir[15:11] == `SUBI) || (ex_ir[15:11] == `SUBC) || (ex_ir[15:11] == `CMP)) begin if (ALUo == 16'b0000_0000_0000_0000) zf <= 1'b1; else zf <= 1'b0; begin if (ALUo[15] == 1'b1) nf <= 1'b1; else nf <= 1'b0; end end if (ex_ir[15:11] == `STORE) begin dw <= 1'b1; smdr1 <= smdr; end else dw <= 1'b0; end end //************* MEM *************// always @(posedge clock or negedge reset) begin if (!reset) begin reg_C1<=0; wb_ir<=0; end else if (state == `exec) begin wb_ir <= mem_ir; if (mem_ir[15:11] == `LOAD) reg_C1 <= d_datain; else reg_C1 <= reg_C; end end //************* WB *************// always @(posedge clock or negedge reset) begin if (!reset) begin gr[0] <= 16'b0000_0000_0000_0000; gr[1] <= 16'b0000_0000_0000_0000; gr[2] <= 16'b0000_0000_0000_0000; gr[3] <= 16'b0000_0000_0000_0000; gr[4] <= 16'b0000_0000_0000_0000; gr[5] <= 16'b0000_0000_0000_0000; gr[6] <= 16'b0000_0000_0000_0000; gr[7] <= 16'b0000_0000_0000_0000; end else if (state == `exec) begin if ((wb_ir[15:11] == `LOAD) || (wb_ir[15:11] == `LDIH) || (wb_ir[15:11] == `ADD)|| (wb_ir[15:11] == `ADDI) || (wb_ir[15:11] == `ADDC) || (wb_ir[15:11] == `SUB)|| (wb_ir[15:11] == `SUBI) || (wb_ir[15:11] == `SUBC) || (wb_ir[15:11] == `AND)|| (wb_ir[15:11] == `OR) || (wb_ir[15:11] == `XOR) || (wb_ir[15:11] == `SLL)|| (wb_ir[15:11] == `SRL) || (wb_ir[15:11] == `SLA)|| (wb_ir[15:11] == `SRA)) gr[wb_ir[10:8]] <= reg_C1; end end endmodule module ALU( input [15:0]a, input [15:0]b, input [4:0]ir, output reg [15:0]ALUo, output reg cf ); reg eat; always@(a or b or ir)begin if(ir==`LOAD || ir==`STORE || ir==`ADD || ir==`ADDI || ir==`ADDC || ir==`JUMP || ir==`JMPR || ir==`BZ || ir==`BNZ || ir==`BN || ir==`BNN || ir==`BC || ir==`BNC) {cf,ALUo} <= a+b; else if(ir==`SUB || ir==`SUBI || ir==`SUBC || ir==`CMP) ALUo <= $signed(a)-b; else if(ir==`AND) ALUo <= a&b; else if(ir==`OR) ALUo <= a|b; else if(ir==`XOR) ALUo <= a^b; else if(ir==`SLL) ALUo <= a<<b; else if(ir==`SRL) ALUo <= a>>b; else if(ir==`SLA) ALUo <= $signed(a)<<<b; else if(ir==`SRA) ALUo <= $signed(a)>>>b; else ALUo <= 16'bXXXXXXXXXXXXXXXX; end endmodule

最后

以上就是爱笑白开水最近收集整理的关于RISC CPU处理器五级流水线 IF ID EX MEM WB 的编写@计算机组成原理的全部内容,更多相关RISC内容请搜索靠谱客的其他文章。

本图文内容来源于网友提供,作为学习参考使用,或来自网络收集整理,版权属于原作者所有。
点赞(82)

评论列表共有 0 条评论

立即
投稿
返回
顶部