概述
DGA-detection
DGA detection based on Deep Learning (CNN and GRU) (基于深度学习的DGA检测)
This project implements the DGA detection algorithm based on CNN and GRU to replace the traditional manual feature machine learning model. This article improves the pre-training model (.pb). Its roc_auc_score is 0.9833 The evaluation indicators of the model are as follows:
#+++++++++++++++++++++++++++++++++++++++++++++#
tf.keras.evaluate :
865us/sample - loss: 0.0239 - accuracy: 0.9833 [0.04613903951440131, 0.98328847]
#+++++++++++++++++++++++++++++++++++++++++++++#
customed model_eval:
confusion matrix [[190987, 3229], [ 2722, 159164]]
f1_score: 0.9816485187138235
precision_score: 0.9801161380108748
recall_score: 0.9801161380108748
average_precision_score: 0.9712800471538547
roc_auc_score: 0.9832799399509491
#++++++++++++++++++++++++++++++++++++++++++++#
最后
以上就是激动皮带为你收集整理的python数据库开发 dga_DGA detection based on Deep Learning (CNN and GRU) (基于深度学习的DGA检测)...的全部内容,希望文章能够帮你解决python数据库开发 dga_DGA detection based on Deep Learning (CNN and GRU) (基于深度学习的DGA检测)...所遇到的程序开发问题。
如果觉得靠谱客网站的内容还不错,欢迎将靠谱客网站推荐给程序员好友。
发表评论 取消回复