概述
逻辑回归
> ###############逻辑回归 > setwd("/Users/yaozhilin/Downloads/R_edu/data") > accepts<-read.csv("accepts.csv") > names(accepts) [1] "application_id" "account_number" "bad_ind" "vehicle_year" "vehicle_make" [6] "bankruptcy_ind" "tot_derog" "tot_tr" "age_oldest_tr" "tot_open_tr" [11] "tot_rev_tr" "tot_rev_debt" "tot_rev_line" "rev_util" "fico_score" [16] "purch_price" "msrp" "down_pyt" "loan_term" "loan_amt" [21] "ltv" "tot_income" "veh_mileage" "used_ind" > accepts<-accepts[complete.cases(accepts),] > select<-sample(1:nrow(accepts),length(accepts$application_id)*0.7) > train<-accepts[select,]###70%用于建模 > test<-accepts[-select,]###30%用于检测 > attach(train) > ###用glm(y~x,family=binomial(link="logit")) > gl<-glm(bad_ind~fico_score,family=binomial(link = "logit")) > summary(gl) Call: glm(formula = bad_ind ~ fico_score, family = binomial(link = "logit")) Deviance Residuals: Min 1Q Median 3Q Max -2.0794 -0.6790 -0.4937 -0.3073 2.6028 Coefficients: Estimate Std. Error z value Pr(>|z|) (Intercept) 9.049667 0.629120 14.38 <2e-16 *** fico_score -0.015407 0.000938 -16.43 <2e-16 *** --- Signif. codes: 0 ‘***' 0.001 ‘**' 0.01 ‘*' 0.05 ‘.' 0.1 ‘ ' 1 (Dispersion parameter for binomial family taken to be 1) Null deviance: 2989.2 on 3046 degrees of freedom Residual deviance: 2665.9 on 3045 degrees of freedom AIC: 2669.9 Number of Fisher Scoring iterations: 5
多元逻辑回归
> ###多元逻辑回归 > gls<-glm(bad_ind~fico_score+bankruptcy_ind+age_oldest_tr+ + tot_derog+rev_util+veh_mileage,family = binomial(link = "logit")) > summary(gls) Call: glm(formula = bad_ind ~ fico_score + bankruptcy_ind + age_oldest_tr + tot_derog + rev_util + veh_mileage, family = binomial(link = "logit")) Deviance Residuals: Min 1Q Median 3Q Max -2.2646 -0.6743 -0.4647 -0.2630 2.8177 Coefficients: Estimate Std. Error z value Pr(>|z|) (Intercept) 8.205e+00 7.433e-01 11.039 < 2e-16 *** fico_score -1.338e-02 1.092e-03 -12.260 < 2e-16 *** bankruptcy_indY -3.771e-01 1.855e-01 -2.033 0.0421 * age_oldest_tr -4.458e-03 6.375e-04 -6.994 2.68e-12 *** tot_derog 3.012e-02 1.552e-02 1.941 0.0523 . rev_util 3.763e-04 5.252e-04 0.717 0.4737 veh_mileage 2.466e-06 1.381e-06 1.786 0.0741 . --- Signif. codes: 0 ‘***' 0.001 ‘**' 0.01 ‘*' 0.05 ‘.' 0.1 ‘ ' 1 (Dispersion parameter for binomial family taken to be 1) Null deviance: 2989.2 on 3046 degrees of freedom Residual deviance: 2601.4 on 3040 degrees of freedom AIC: 2615.4 Number of Fisher Scoring iterations: 5 > glss<-step(gls,direction = "both") Start: AIC=2615.35 bad_ind ~ fico_score + bankruptcy_ind + age_oldest_tr + tot_derog + rev_util + veh_mileage Df Deviance AIC - rev_util 1 2601.9 2613.9 <none> 2601.3 2615.3 - veh_mileage 1 2604.4 2616.4 - tot_derog 1 2605.1 2617.1 - bankruptcy_ind 1 2605.7 2617.7 - age_oldest_tr 1 2655.9 2667.9 - fico_score 1 2763.8 2775.8 Step: AIC=2613.88 bad_ind ~ fico_score + bankruptcy_ind + age_oldest_tr + tot_derog + veh_mileage Df Deviance AIC <none> 2601.9 2613.9 - veh_mileage 1 2604.9 2614.9 + rev_util 1 2601.3 2615.3 - tot_derog 1 2605.7 2615.7 - bankruptcy_ind 1 2606.1 2616.1 - age_oldest_tr 1 2656.9 2666.9 - fico_score 1 2773.2 2783.2
> #出来的数据是logit,我们需要转换 > train$pre<-predict(glss,train) > #出来的数据是logit,我们需要转换 > train$pre<-predict(glss,train) > summary(train$pre) Min. 1st Qu. Median Mean 3rd Qu. Max. -4.868 -2.421 -1.671 -1.713 -1.011 2.497 > train$pre_p<-1/(1+exp(-1*train$pre)) > summary(train$pre_p) Min. 1st Qu. Median Mean 3rd Qu. Max. 0.00763 0.08157 0.15823 0.19298 0.26677 0.92395
#逻辑回归不需要检测扰动项,但需要检测共线性 > library(car) > vif(glss) > fico_score bankruptcy_ind age_oldest_tr tot_derog veh_mileage >1.271283 1.144846 1.075603 1.423850 1.003616
到此这篇关于R语言逻辑回归深入讲解的文章就介绍到这了,更多相关R语言逻辑回归内容请搜索靠谱客以前的文章或继续浏览下面的相关文章希望大家以后多多支持靠谱客!
最后
以上就是柔弱抽屉为你收集整理的R语言逻辑回归深入讲解的全部内容,希望文章能够帮你解决R语言逻辑回归深入讲解所遇到的程序开发问题。
如果觉得靠谱客网站的内容还不错,欢迎将靠谱客网站推荐给程序员好友。
本图文内容来源于网友提供,作为学习参考使用,或来自网络收集整理,版权属于原作者所有。
发表评论 取消回复