概述
本篇文章带大家了解一下NodeJs中的buffer缓存区,介绍一下Node.js中Buffer的实现,一起来看看吧!
涉及的知识点
- Buffer 缓冲区
- ECMAScript 6 入门 ArrayBuffer
- 深入浅出 Node.js
- 浅谈malloc,calloc,realloc函数之间的区别
- 补码
- 理解字节序
ArrayBuffer
先说一下 JavaScript 中的 ArrayBuffer 的接口及其背景, 如下内容来自于 ECMAScript 6 入门 ArrayBuffer 。
看完我们知道, ArrayBuffer 系列接口使得 JavaScript 有了处理二进制数据的能力, 其使用方式主要是分为如下几步
通过 ArrayBuffer 构造函数, 创建长度为 10 的内存区
通过 Uint8Array 构造函数传参数使其指向 ArrayBuffer
向操作数组一样向第一个字节写入数据 123
const buf1 = new ArrayBuffer(10);
const x1 = new Uint8Array(buf1);
x1[0] = 123;
登录后复制
Buffer
在 Node.js 中也完全可以使用 ArrayBuffer 相关的接口去处理二进制数据, 仔细看完 ArrayBuffer 与 Buffer 的文档可以发现, Buffer 的进一步封装能够更简单的上手与更好的性能, 接着让我们去看看 Buffer 的使用例子
通过 alloc 方法创建长度为 10 的内存区
通过 writeUInt8 向第一个字节写入数据 123
通过 readUint8 读取第一个字节的数据
const buf1 = Buffer.alloc(10);
buf1.writeUInt8(123, 0)
buf1.readUint8(0)
登录后复制
Buffer.alloc
通过静态方法 alloc 创建一个 Buffer 实例
Buffer.alloc = function alloc(size, fill, encoding) {
assertSize(size);
if (fill !== undefined && fill !== 0 && size > 0) {
const buf = createUnsafeBuffer(size);
return _fill(buf, fill, 0, buf.length, encoding);
}
return new FastBuffer(size);
};
class FastBuffer extends Uint8Array {
constructor(bufferOrLength, byteOffset, length) {
super(bufferOrLength, byteOffset, length);
}
}
登录后复制
发现 Buffer 其实就是 Uint8Array, 这里再补充一下在 JavaScript 中也可以不通过 ArrayBuffer 对象, 直接使用 Uint8Array 操作内存, 如以下的例子
通过 Uint8Array 构造函数创建长度为 10 的内存区
向操作数组一样向第一个字节写入数据 123
const x1 = new Uint8Array(10);
x1[0] = 123
登录后复制
那么 Node.js 中 Buffer 仅通过 Uint8Array 类, 如何模拟实现下面所有的视图类型的行为, 以及 Buffer 又做了哪些其他的扩展了 ?
- Int8Array:8 位有符号整数,长度 1 个字节。
- Uint8Array:8 位无符号整数,长度 1 个字节。
- Uint8ClampedArray:8 位无符号整数,长度 1 个字节,溢出处理不同。
- Int16Array:16 位有符号整数,长度 2 个字节。
- Uint16Array:16 位无符号整数,长度 2 个字节。
- Int32Array:32 位有符号整数,长度 4 个字节。
- Uint32Array:32 位无符号整数,长度 4 个字节。
- Float32Array:32 位浮点数,长度 4 个字节。
- Float64Array:64 位浮点数,长度 8 个字节。
allocUnsafe, allocUnsafeSlow
提供了 alloc, allocUnsafe, allocUnsafeSlow 3个方法去创建一个 Buffer 实例, 上面讲了 alloc 方法没有什么特别, 下面讲一下另外两种方法
allocUnsafe
与 alloc 不同的是, allocUnsafe 并没有直接返回 FastBuffer, 而是始终从 allocPool 中类似 slice 出来的内存区。
Buffer.allocUnsafe = function allocUnsafe(size) {
assertSize(size);
return allocate(size);
};
function allocate(size) {
if (size <= 0) {
return new FastBuffer();
}
if (size < (Buffer.poolSize >>> 1)) {
if (size > (poolSize - poolOffset))
createPool();
const b = new FastBuffer(allocPool, poolOffset, size);
poolOffset += size;
alignPool();
return b;
}
return createUnsafeBuffer(size);
}
登录后复制
这块内容其实我也是很早之前在读朴灵大佬的深入浅出 Node.js 就有所映像, 为什么这样做了, 原因主要如下
诞生于SunOS操作系统(Solaris)中,目前在一些*nix操作系统中有广泛的应用,如FreeBSD和Linux。 简单而言,slab就是一块申请好的固定大小的内存区域。slab具有如下3种状态。
- full:完全分配状态。
- partial:部分分配状态。
- empty:没有被分配状态。
new Buffer(size); Node以8 KB为界限来区分Buffer是大对象还是小对象: Buffer.poolSize = 8 * 1024; 这个8 KB的值也就是每个slab的大小值,在JavaScript层面,以它作为单位单元进行内存的分配。
allocUnsafeSlow
比起 allocUnsafe 从预先申请好的 allocPool 内存中切割出来的内存区, allocUnsafeSlow 是直接通过 createUnsafeBuffer 先创建的内存区域。从命名可知直接使用 Uint8Array 等都是 Slow 缓慢的。
Buffer.allocUnsafeSlow = function allocUnsafeSlow(size) {
assertSize(size);
return createUnsafeBuffer(size);
};
登录后复制
createUnsafeBuffer
这个 Unsafe 不安全又是怎么回事了, 其实我们发现直接通过 Uint8Array 申请的内存都是填充了 0 数据的认为都是安全的, 那么 Node.js 又做了什么操作使其没有被填充数据了 ?
let zeroFill = getZeroFillToggle();
function createUnsafeBuffer(size) {
zeroFill[0] = 0;
try {
return new FastBuffer(size);
} finally {
zeroFill[0] = 1;
}
}
登录后复制
那么我们只能去探究一下 zeroFill 在创建前后, 类似开关的操作的是如何实现这个功能
getZeroFillToggle
zeroFill 的值来自于 getZeroFillToggle 方法返回, 其实现在 src/node_buffer.cc 文件中, 整个看下来也是比较费脑。
简要的分析一下 zeroFill 的设置主要是修改了 zero_fill_field 这个变量的值, zero_fill_field 值主要使用在 Allocate 分配器函数中。
void GetZeroFillToggle(const FunctionCallbackInfo<Value>& args) {
Environment* env = Environment::GetCurrent(args);
NodeArrayBufferAllocator* allocator = env->isolate_data()->node_allocator();
Local<ArrayBuffer> ab;
// It can be a nullptr when running inside an isolate where we
// do not own the ArrayBuffer allocator.
if (allocator == nullptr) {
// Create a dummy Uint32Array - the JS land can only toggle the C++ land
// setting when the allocator uses our toggle. With this the toggle in JS
// land results in no-ops.
ab = ArrayBuffer::New(env->isolate(), sizeof(uint32_t));
} else {
uint32_t* zero_fill_field = allocator->zero_fill_field();
std::unique_ptr<BackingStore> backing =
ArrayBuffer::NewBackingStore(zero_fill_field,
sizeof(*zero_fill_field),
[](void*, size_t, void*) {},
nullptr);
ab = ArrayBuffer::New(env->isolate(), std::move(backing));
}
ab->SetPrivate(
env->context(),
env->untransferable_object_private_symbol(),
True(env->isolate())).Check();
args.GetReturnValue().Set(Uint32Array::New(ab, 0, 1));
}
登录后复制
Allocate
内存分配器的实现
从代码实现可以看到如果 zero_fill_field 值为
- 真值的话会调用 UncheckedCalloc 去分配内存
- 假值则调用 UncheckedMalloc 分配内存
void* NodeArrayBufferAllocator::Allocate(size_t size) {
void* ret;
if (zero_fill_field_ || per_process::cli_options->zero_fill_all_buffers)
ret = UncheckedCalloc(size);
else
ret = UncheckedMalloc(size);
if (LIKELY(ret != nullptr))
total_mem_usage_.fetch_add(size, std::memory_order_relaxed);
return ret;
}
登录后复制
UncheckedCalloc UncheckedMalloc
接着 Allocate 函数的内容
- zero_fill_field 为真值的话会调用 UncheckedCalloc, 最后通过 calloc 去分配内存
- zero_fill_field 为假值则调用 UncheckedMalloc, 最后通过 realloc 去分配内存
关于 calloc 与 realloc 函数
- calloc: calloc 函数得到的内存空间是经过初始化的,其内容全为0
- realloc: realloc 函数得到的内存空间是没有经过初始化的
至此读到这里, 我们知道了 createUnsafeBuffer 创建未被初始化内存的完整实现, 在需要创建时设置 zero_fill_field 为 0 即假值即可, 同步创建成功再把 zero_fill_field 设置为 1 即真值就好了。
inline T* UncheckedCalloc(size_t n) {
if (n == 0) n = 1;
MultiplyWithOverflowCheck(sizeof(T), n);
return static_cast<T*>(calloc(n, sizeof(T)));
}
template <typename T>
inline T* UncheckedMalloc(size_t n) {
if (n == 0) n = 1;
return UncheckedRealloc<T>(nullptr, n);
}
template <typename T>
T* UncheckedRealloc(T* pointer, size_t n) {
size_t full_size = MultiplyWithOverflowCheck(sizeof(T), n);
if (full_size == 0) {
free(pointer);
return nullptr;
}
void* allocated = realloc(pointer, full_size);
if (UNLIKELY(allocated == nullptr)) {
// Tell V8 that memory is low and retry.
LowMemoryNotification();
allocated = realloc(pointer, full_size);
}
return static_cast<T*>(allocated);
}
登录后复制
其他实现
通过 Uint8Array 如何写入读取 Int8Array 数据? 如通过 writeInt8 写入一个有符号的 -123 数据。
const buf1 = Buffer.alloc(10);
buf1.writeInt8(-123, 0)
登录后复制
writeInt8, readInt8
对写入的数值范围为 -128 到 127 进行了验证
直接进行赋值操作
其实作为 Uint8Array 对应的 C 语言类型为 unsigned char, 可写入的范围为 0 到 255, 当写入一个有符号的值时如 -123, 其最高位符号位为 1, 其二进制的原码为 11111011, 最终存储在计算机中所有的数值都是用补码。所以其最终存储的补码为 10000101, 10 进制表示为 133。
此时如果通过 readUInt8 去读取数据的话就会发现返回值为 133
如果通过 readInt8 去读取的话, 套用代码的实现 133 | (133 & 2 ** 7) * 0x1fffffe === -123 即满足要求
function writeInt8(value, offset = 0) {
return writeU_Int8(this, value, offset, -0x80, 0x7f);
}
function writeU_Int8(buf, value, offset, min, max) {
value = +value;
// `checkInt()` can not be used here because it checks two entries.
validateNumber(offset, 'offset');
if (value > max || value < min) {
throw new ERR_OUT_OF_RANGE('value', `>= ${min} and <= ${max}`, value);
}
if (buf[offset] === undefined)
boundsError(offset, buf.length - 1);
buf[offset] = value;
return offset + 1;
}
function readInt8(offset = 0) {
validateNumber(offset, 'offset');
const val = this[offset];
if (val === undefined)
boundsError(offset, this.length - 1);
return val | (val & 2 ** 7) * 0x1fffffe;
}
登录后复制
通过 Uint8Array 如何写入读取 Uint16Array 数据?
writeUInt16, readUInt16
从下面的代码也是逐渐的看清了 Uint8Array 的实现, 如果写入 16 位的数组, 即会占用两个字节长度的 Uint8Array, 每个字节存储 8 位即可。
function writeU_Int16BE(buf, value, offset, min, max) {
value = +value;
checkInt(value, min, max, buf, offset, 1);
buf[offset++] = (value >>> 8);
buf[offset++] = value;
return offset;
}
function readUInt16BE(offset = 0) {
validateNumber(offset, 'offset');
const first = this[offset];
const last = this[offset + 1];
if (first === undefined || last === undefined)
boundsError(offset, this.length - 2);
return first * 2 ** 8 + last;
}
登录后复制
BE 指的是大端字节序, LE 指的是小端字节序, 使用何种方式都是可以的。小端字节序写用小端字节序读, 端字节序写就用大端字节序读, 读写规则不一致则会造成乱码, 更多可见 理解字节序。
- 大端字节序:高位字节在前,低位字节在后,这是人类读写数值的方法。
- 小端字节序:低位字节在前,高位字节在后,即以0x1122形式储存。
writeFloatForwards, readFloatForwards
对于 float32Array 的实现, 相当于直接使用了 float32Array
- 写入一个数值时直接赋值给 float32Array 第一位, 然后从 float32Array.buffe 中取出写入的 4 个字节内容
- 读取时给 float32Array.buffe 4个字节逐个赋值, 然后直接返回 float32Array 第一位即可
const float32Array = new Float32Array(1);
const uInt8Float32Array = new Uint8Array(float32Array.buffer);
function writeFloatForwards(val, offset = 0) {
val = +val;
checkBounds(this, offset, 3);
float32Array[0] = val;
this[offset++] = uInt8Float32Array[0];
this[offset++] = uInt8Float32Array[1];
this[offset++] = uInt8Float32Array[2];
this[offset++] = uInt8Float32Array[3];
return offset;
}
function readFloatForwards(offset = 0) {
validateNumber(offset, 'offset');
const first = this[offset];
const last = this[offset + 3];
if (first === undefined || last === undefined)
boundsError(offset, this.length - 4);
uInt8Float32Array[0] = first;
uInt8Float32Array[1] = this[++offset];
uInt8Float32Array[2] = this[++offset];
uInt8Float32Array[3] = last;
return float32Array[0];
}
登录后复制
小结
本文主要讲了 Node.js 中 Buffer 的实现, 相比直接使用 Uint8Array 等在性能安全以及使用上方便层度上做了一些改造, 有兴趣的同学可以扩展阅读 gRPC 中的 Protocol Buffers 的实现, 其遵循的是 Varints 编码 与 Zigzag 编码实现。
最后
以上就是健忘芝麻为你收集整理的深入了解Nodejs中的buffer缓存区的全部内容,希望文章能够帮你解决深入了解Nodejs中的buffer缓存区所遇到的程序开发问题。
如果觉得靠谱客网站的内容还不错,欢迎将靠谱客网站推荐给程序员好友。
发表评论 取消回复