我是靠谱客的博主 快乐菠萝,这篇文章主要介绍基于carla和python的自动驾驶仿真系列3,现在分享给大家,希望可以做个参考。

欢迎来到卡拉自动驾驶汽车的Python编程教程的第3部分。在本教程中,我们将利用Carla API的知识,尝试将这个问题转化为一个强化学习问题。
在OpenAI开创了强化学习环境和解决方案的开放源码之后,我们就有了一种接近强化学习环境的标准化方法。
这里的想法是,您的环境将有一个step方法,它返回:observation, reward, done, extra_info,以及一个reset方法,它将基于某种done标志重新启动环境。
我们所需要做的就是创建代码来表示这个。我们将从卡拉经常进口的东西开始:

复制代码
1
2
3
4
5
6
7
8
9
10
11
12
import glob import os import sys try: sys.path.append(glob.glob('../carla/dist/carla-*%d.%d-%s.egg' % ( sys.version_info.major, sys.version_info.minor, 'win-amd64' if os.name == 'nt' else 'linux-x86_64'))[0]) except IndexError: pass import carla

接下来,我们将创建环境的类,我们将其命名为CarEnv。在模型、代理和环境的脚本顶部添加一些常量会很方便,所以我要做的第一件事就是创建我们的第一个常量,即SHOW PREVIEW

复制代码
1
2
SHOW_PREVIEW = False

现在让我们为环境类设置一些初始值:

复制代码
1
2
3
4
5
6
7
8
9
class CarEnv: SHOW_CAM = SHOW_PREVIEW STEER_AMT = 1.0 im_width = IMG_WIDTH im_height = IMG_HEIGHT actor_list = [] front_camera = None collision_hist = []

我认为这些都是不言自明的,但是SHOW_CAM是我们是否要显示预览的关键。为了调试的目的,查看一个可能很有用,但您不一定想要一直显示一个,因为执行所有这些可能会耗费大量资源。
STEER_AMT是我们想要应用在转向上的。目前,这是一个全面的转变。后来我们可能会发现,最好是控制的力度小一点,也许做一些累积的事情……等。现在,全力驾驶!
将使用collision_hist,因为碰撞传感器报告事故历史。基本上,如果这个列表中有任何东西,我们会说我们碰撞了。对于init方法。你在之前的教程中看到的所有东西:

复制代码
1
2
3
4
5
6
7
8
9
10
11
12
13
14
def __init__(self): self.client = carla.Client('localhost', 2000) self.client.set_timeout(2.0) # Once we have a client we can retrieve the world that is currently # running. self.world = self.client.get_world() # The world contains the list blueprints that we can use for adding new # actors into the simulation. blueprint_library = self.world.get_blueprint_library() # Now let's filter all the blueprints of type 'vehicle' and choose one # at random. #print(blueprint_library.filter('vehicle')) self.model_3 = blueprint_library.filter('model3')[0]

接下来,我们将创建reset方法。

复制代码
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
def reset(self): self.collision_hist = [] self.actor_list = [] self.transform = random.choice(self.world.get_map().get_spawn_points()) self.vehicle = self.world.spawn_actor(self.model_3, self.transform) self.actor_list.append(self.vehicle) self.rgb_cam = self.world.get_blueprint_library().find('sensor.camera.rgb') self.rgb_cam.set_attribute('image_size_x', f'{self.im_width}') self.rgb_cam.set_attribute('image_size_y', f'{self.im_height}') self.rgb_cam.set_attribute('fov', '110') transform = carla.Transform(carla.Location(x=2.5, z=0.7)) self.sensor = self.world.spawn_actor(self.rgb_cam, transform, attach_to=self.vehicle) self.actor_list.append(self.sensor) self.sensor.listen(lambda data: self.process_img(data)) self.vehicle.apply_control(carla.VehicleControl(throttle=0.0, brake=0.0)) # initially passing some commands seems to help with time. Not sure why.

这里你看到的所有东西,没有什么新的或新奇的,只是变成OOP。接下来,我们将碰撞传感器添加到这个方法中:

复制代码
1
2
3
4
5
6
7
time.sleep(4) # sleep to get things started and to not detect a collision when the car spawns/falls from sky. colsensor = self.world.get_blueprint_library().find('sensor.other.collision') self.colsensor = self.world.spawn_actor(colsensor, transform, attach_to=self.vehicle) self.actor_list.append(self.colsensor) self.colsensor.listen(lambda event: self.collision_data(event))

我们在这里开始了四秒钟的睡眠,因为汽车真的“掉入”了模拟器。通常情况下,当汽车撞到地面时,我们会得到一个碰撞记录。而且,最初,它会花一些时间让这些传感器初始化和返回值,所以我们会用一个安全可靠的4秒。为了防止需要更长的时间,我们可以做以下事情:

复制代码
1
2
3
4
while self.front_camera is None: time.sleep(0.01)

但是我们不能这么做,因为我们需要确定赛车在衍生时已经从天上掉下来了。最后,让我们记录下这一集的实际开始时间,确保没有使用刹车和油门,并返回我们的第一个观察结果:

复制代码
1
2
3
4
5
self.episode_start = time.time() self.vehicle.apply_control(carla.VehicleControl(brake=0.0, throttle=0.0)) return self.front_camera

完整的代码为我们的CarEnv到目前为止是:

复制代码
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
class CarEnv: SHOW_CAM = SHOW_PREVIEW STEER_AMT = 1.0 im_width = IMG_WIDTH im_height = IMG_HEIGHT actor_list = [] front_camera = None collision_hist = [] def __init__(self): self.client = carla.Client('localhost', 2000) self.client.set_timeout(2.0) # Once we have a client we can retrieve the world that is currently # running. self.world = self.client.get_world() # The world contains the list blueprints that we can use for adding new # actors into the simulation. blueprint_library = self.world.get_blueprint_library() # Now let's filter all the blueprints of type 'vehicle' and choose one # at random. #print(blueprint_library.filter('vehicle')) self.model_3 = blueprint_library.filter('model3')[0] def reset(self): self.collision_hist = [] self.actor_list = [] self.transform = random.choice(self.world.get_map().get_spawn_points()) self.vehicle = self.world.spawn_actor(self.model_3, self.transform) self.actor_list.append(self.vehicle) self.rgb_cam = self.world.get_blueprint_library().find('sensor.camera.rgb') self.rgb_cam.set_attribute('image_size_x', f'{self.im_width}') self.rgb_cam.set_attribute('image_size_y', f'{self.im_height}') self.rgb_cam.set_attribute('fov', '110') transform = carla.Transform(carla.Location(x=2.5, z=0.7)) self.sensor = self.world.spawn_actor(self.rgb_cam, transform, attach_to=self.vehicle) self.actor_list.append(self.sensor) self.sensor.listen(lambda data: self.process_img(data)) self.vehicle.apply_control(carla.VehicleControl(throttle=0.0, brake=0.0)) time.sleep(4) # sleep to get things started and to not detect a collision when the car spawns/falls from sky. colsensor = self.world.get_blueprint_library().find('sensor.other.collision') self.colsensor = self.world.spawn_actor(colsensor, transform, attach_to=self.vehicle) self.actor_list.append(self.colsensor) self.colsensor.listen(lambda event: self.collision_data(event)) while self.front_camera is None: time.sleep(0.01) self.episode_start = time.time() self.vehicle.apply_control(carla.VehicleControl(brake=0.0, throttle=0.0)) return self.front_camera

现在,让我们添加collision_dataprocess_img方法:

复制代码
1
2
3
4
5
6
7
8
9
10
11
12
13
def collision_data(self, event): self.collision_hist.append(event) def process_img(self, image): i = np.array(image.raw_data) #np.save("iout.npy", i) i2 = i.reshape((self.im_height, self.im_width, 4)) i3 = i2[:, :, :3] if self.SHOW_CAM: cv2.imshow("",i3) cv2.waitKey(1) self.front_camera = i3

现在我们需要用step方法。该方法采取一个动作,然后按照通常的强化学习范式返回observation, reward, done, any_extra_info 。开始:

复制代码
1
2
3
4
5
6
7
8
9
10
11
12
13
def step(self, action): ''' For now let's just pass steer left, center, right? 0, 1, 2 ''' if action == 0: self.vehicle.apply_control(carla.VehicleControl(throttle=1.0, steer=0)) if action == 1: self.vehicle.apply_control(carla.VehicleControl(throttle=1.0, steer=-1*self.STEER_AMT)) if action == 2: self.vehicle.apply_control(carla.VehicleControl(throttle=1.0, steer=1*self.STEER_AMT))

上面展示了我们如何根据传递给我们的数值动作来采取一个动作,现在我们只需要处理observation, possible collision, and reward:

复制代码
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
v = self.vehicle.get_velocity() kmh = int(3.6 * math.sqrt(v.x**2 + v.y**2 + v.z**2)) if len(self.collision_hist) != 0: done = True reward = -200 elif kmh < 50: done = False reward = -1 else: done = False reward = 1 if self.episode_start + SECONDS_PER_EPISODE < time.time(): done = True return self.front_camera, reward, done, None

我们得到了飞行器的速度,从速度转换为千米每小时。我这样做是为了避免探员在一个狭小的圈子里开车。如果我们需要一定的速度来获得奖励,这应该有希望抑制它。
接下来,我们会查看是否已经耗尽了我们的回合时间,然后我们会返回所有的东西。这样,我们的环境就完成了!
完整的代码到这一点:

复制代码
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
import glob import os import sys try: sys.path.append(glob.glob('../carla/dist/carla-*%d.%d-%s.egg' % ( sys.version_info.major, sys.version_info.minor, 'win-amd64' if os.name == 'nt' else 'linux-x86_64'))[0]) except IndexError: pass import carla SHOW_PREVIEW = False class CarEnv: SHOW_CAM = SHOW_PREVIEW STEER_AMT = 1.0 im_width = IMG_WIDTH im_height = IMG_HEIGHT actor_list = [] front_camera = None collision_hist = [] def __init__(self): self.client = carla.Client('localhost', 2000) self.client.set_timeout(2.0) # Once we have a client we can retrieve the world that is currently # running. self.world = self.client.get_world() # The world contains the list blueprints that we can use for adding new # actors into the simulation. blueprint_library = self.world.get_blueprint_library() # Now let's filter all the blueprints of type 'vehicle' and choose one # at random. #print(blueprint_library.filter('vehicle')) self.model_3 = blueprint_library.filter('model3')[0] def reset(self): self.collision_hist = [] self.actor_list = [] self.transform = random.choice(self.world.get_map().get_spawn_points()) self.vehicle = self.world.spawn_actor(self.model_3, self.transform) self.actor_list.append(self.vehicle) self.rgb_cam = self.world.get_blueprint_library().find('sensor.camera.rgb') self.rgb_cam.set_attribute('image_size_x', f'{self.im_width}') self.rgb_cam.set_attribute('image_size_y', f'{self.im_height}') self.rgb_cam.set_attribute('fov', '110') transform = carla.Transform(carla.Location(x=2.5, z=0.7)) self.sensor = self.world.spawn_actor(self.rgb_cam, transform, attach_to=self.vehicle) self.actor_list.append(self.sensor) self.sensor.listen(lambda data: self.process_img(data)) self.vehicle.apply_control(carla.VehicleControl(throttle=0.0, brake=0.0)) time.sleep(4) # sleep to get things started and to not detect a collision when the car spawns/falls from sky. colsensor = self.world.get_blueprint_library().find('sensor.other.collision') self.colsensor = self.world.spawn_actor(colsensor, transform, attach_to=self.vehicle) self.actor_list.append(self.colsensor) self.colsensor.listen(lambda event: self.collision_data(event)) while self.front_camera is None: time.sleep(0.01) self.episode_start = time.time() self.vehicle.apply_control(carla.VehicleControl(brake=0.0, throttle=0.0)) return self.front_camera def collision_data(self, event): self.collision_hist.append(event) def process_img(self, image): i = np.array(image.raw_data) #np.save("iout.npy", i) i2 = i.reshape((self.im_height, self.im_width, 4)) i3 = i2[:, :, :3] if self.SHOW_CAM: cv2.imshow("",i3) cv2.waitKey(1) self.front_camera = i3 def step(self, action): ''' For now let's just pass steer left, center, right? 0, 1, 2 ''' if action == 0: self.vehicle.apply_control(carla.VehicleControl(throttle=1.0, steer=0)) if action == 1: self.vehicle.apply_control(carla.VehicleControl(throttle=1.0, steer=-1*self.STEER_AMT)) if action == 2: self.vehicle.apply_control(carla.VehicleControl(throttle=1.0, steer=1*self.STEER_AMT)) v = self.vehicle.get_velocity() kmh = int(3.6 * math.sqrt(v.x**2 + v.y**2 + v.z**2)) if len(self.collision_hist) != 0: done = True reward = -200 elif kmh < 50: done = False reward = -1 else: done = False reward = 1 if self.episode_start + SECONDS_PER_EPISODE < time.time(): done = True return self.front_camera, reward, done, None

在下一篇教程中,我们将编写Agent类,它将与这个环境交互,并容纳我们实际的强化学习模型。

最后

以上就是快乐菠萝最近收集整理的关于基于carla和python的自动驾驶仿真系列3的全部内容,更多相关基于carla和python内容请搜索靠谱客的其他文章。

本图文内容来源于网友提供,作为学习参考使用,或来自网络收集整理,版权属于原作者所有。
点赞(502)

评论列表共有 0 条评论

立即
投稿
返回
顶部