我是靠谱客的博主 自由日记本,最近开发中收集的这篇文章主要介绍读懂Python的异常机制,觉得挺不错的,现在分享给大家,希望可以做个参考。

概述

前言:之前工作时用python完成一个利用串口发SCPI与单片机交互通信的命令行窗口,在实现功能的时候发现用python对数据结果无论是最终正确值的返回还是错误值的返回都可以直接return给主界面。显然直接return不同含义的数据是不行的,所以采用异常机制来处理错误值的数据。因为之前对异常这方面了解的比较少,在此查了点资料并整理个小笔记。

文章目录

  • 一、对异常的理解
    • 1、什么是异常
    • 2、错误和异常的区别
    • 3、常见python异常种类
  • 二、python五大异常处理机制
    • 1、默认异常处理机制
    • 2、try....except....处理机制
    • 3、try...except...finally.....处理机制
    • 4、assert断言处理机制
    • 5、with...as处理机制
  • 三、python异常自定义
    • 1、异常自定义
    • 2、异常抛出raise
    • 3、异常捕获
  • 四、异常使用注意事项
    • 1、不要太依赖异常机制
    • 2、不要在 try 块中引入太多的代码
    • 3、不要忽略捕获到的异常
  • 总结

(免费学习推荐:python视频教程

一、对异常的理解

1、什么是异常

  异常即“与正常情况不同”,何为正常?正常便是解释器在解释代码时,我们所编写的代码符合解释器定义的规则,即为正常,当解释器发现某段代码符合语法但有可能出现不正常的情况时,解释器便会发出一个事件,中断程序的正常执行。这个中断的信号便是一个异常信号。所以,总体解释就是,在解释器发现到程序出现错误的时候,则会产生一个异常,若程序没有处理,则会将该异常抛出,程序的运行也随之终止。我们可以在一个空白的.py文件中写一句int(“m”),运行后结果如下。
在这里插入图片描述

  这一串字体为解释器抛出的一系列错误信息,因为int()传入的参数只支持数字字符串和数字,显然‘m’不属于数字字符串传入参数错误所以解释器报“valueError”的错误。

2、错误和异常的区别

  对于python错误的概述:它指的是代码运行前的语法或逻辑错误。拿常规语法错误来说,当我们编写的代码过不了语法检测时,则会直接出现语法错误,必须在程序执行前就改正,不然写的代码将毫无意义,代码是不运行的,也无法捕获得到。举个例子,在.py文件输入if a = 1 print(“hello”),输出结果如下:

  Traceback (most recent call last):
  	File "E:/Test_code/test.py",line 1
    	if a = 1 print("hello")
                ^SyntaxError: invalid syntax
登录后复制

  函数 print() 被检查到有错误,是它前面缺少了一个冒号 : ,所以解析器会复现句法错误的那行代码,并用一个小“箭头”指向行里检测到的第一个错误,所以我们可以直接找到对应的位置修改其语法。当然除了语法错误,还有很多程序奔溃的错误,如内存溢出等,这类错误往往比较隐蔽。
  相比于错误,python异常主要在程序执行过程中,程序遇见逻辑或算法问题,这时解释器如果可以处理,则没问题,如果处理不了,便直接终止程序,便将异常抛出,如第1小点的int(‘m’)例子,因为参数传入错误导致程序出错。这种因为逻辑产生的异常五花八门,还好我们的解释器都内置好了各种异常的种类,让我们知道是什么样的异常出现,好让我们“对症下药”。
  这里注意一点,上述语法错误是可识别的错误,所以解释器也会默认抛出一个SyntaxError异常信息反馈给程序员。所以本质上大部分错误都是可被输出打印的,只是因为错误代码不运行,也就没法处理,所以捕获错误的异常信息就变得没意义。

3、常见python异常种类

  这里贴上我们在写代码时最常见的异常类型,如果遇到其他种类的异常,当然是选择白度啦~

异常名称名称解析
BaseException所有异常的基类
SystemExit解释器请求退出
KeyboardInterrupt用户中断执行(通常是输入^C)
Exception常规错误的基类
StopIteration迭代器没有更多的值
GeneratorExit生成器(generator)发生异常来通知退出
StandardError所有的内建标准异常的基类
ArithmeticError所有数值计算错误的基类
FloatingPointError浮点计算错误
OverflowError数值运算超出最大限制
ZeropisionError除(或取模)零 (所有数据类型)
AssertionError断言语句失败
AttributeError对象没有这个属性
EOFError没有内建输入,到达EOF 标记
EnvironmentError操作系统错误的基类
IOError输入/输出操作失败
OSError操作系统错误
WindowsError系统调用失败
ImportError导入模块/对象失败
LookupError无效数据查询的基类
IndexError序列中没有此索引(index)
KeyError映射中没有这个键
MemoryError内存溢出错误(对于Python 解释器不是致命的)
NameError未声明/初始化对象 (没有属性)
UnboundLocalError访问未初始化的本地变量
ReferenceError弱引用(Weak reference)试图访问已经垃圾回收了的对象
RuntimeError一般的运行时错误
NotImplementedError尚未实现的方法
SyntaxError Python语法错误
IndentationError缩进错误
TabError Tab和空格混用
SystemError一般的解释器系统错误
TypeError对类型无效的操作
ValueError传入无效的参数
UnicodeError Unicode相关的错误
UnicodeDecodeError Unicode解码时的错误
UnicodeEncodeError Unicode编码时错误
UnicodeTranslateError Unicode转换时错误
Warning警告的基类
DeprecationWarning关于被弃用的特征的警告
FutureWarning关于构造将来语义会有改变的警告
OverflowWarning旧的关于自动提升为长整型(long)的警告
PendingDeprecationWarning关于特性将会被废弃的警告
RuntimeWarning可疑的运行时行为(runtime behavior)的警告
SyntaxWarning可疑的语法的警告
UserWarning用户代码生成的警告

二、python五大异常处理机制

  我们明白了什么是异常后,那么发现异常后怎么处理,便是我们接下来要解决的问题。这里将处理异常的方式总结为五种。

1、默认异常处理机制

  “默认”则说明是解释器默认做出的行为,如果解释器发现异常,并且我们没有对异常进行任何预防,那么程序在执行过程中就会中断程序,调用python默认的异常处理器,并在终端输出异常信息。刚才举过的例子:int(“m”),便是解释器因为发现参数传入异常,这种异常解释器“无能为力”,所以它最后中断了程序,并将错误信息打印输出,告诉码农朋友们:你的程序有bug!!!

2、try…except…处理机制

  我们把可能发生错误的语句放在try语句里,用except来处理异常。每一个try,都必须至少有一个或者多个except。举一个最简单的例子如下,在try访问number的第500个元素,很明显数组越界访问不了,这时候解释器会发出异常信号:IndexError,接着寻找后面是否有对应的异常捕获语句except ,如果有则执行对应的except语句,待except语句执行完毕后,程序将继续往下执行。如果没有对应的except语句,即用户没有处理对应的异常,这时解释器会直接中断程序并将错误信息打印输出

number = 'hello'try:	print(number[500])	#数组越界访问except IndexError:	print("下标越界啦!")except NameError:	print("未声明对象!")print("继续运行...")
登录后复制

输出结果如下,因为解释器发出异常信号是IndexError,所以执行下标越界语句。

下标越界啦!
继续运行...
登录后复制

  为了解锁更多用法,我们再将例子改一下,我们依然在try访问number的第500个元素,造成访问越界错误,这里的except用了as关键字可以获得异常对象,这样子便可获得错误的属性值来输出信息。

number = 'hello'try:	print(number[500])	#数组越界访问except IndexError as e:	print(e)except Exception as e:	#万能异常
	print(e)except:			  	 #默认处理所有异常
	print("所有异常都可处理")print("继续运行...")
登录后复制

输出结果如下所示,会输出系统自带的提示错误:string index out of range,相对于解释器因为异常自己抛出来的一堆红色刺眼的字体,这种看起来舒服多了(能够“运筹帷幄”的异常才是好异常嘛哈哈哈)。另外这里用到“万能异常”Exception,基本所有没处理的异常都可以在此执行。最后一个except表示,如果没有指定异常,则默认处理所有的异常。

string index out of range继续运行...
登录后复制

3、try…except…finally…处理机制

  finally语句块表示,无论异常发生与否,finally中的语句都要执行完毕。也就是可以很霸气的说,无论产生的异常是被except捕获到处理了,还是没被捕获到解释器将错误输出来了,都统统要执行这个finally。还是原来简单的例子加上finally语句块如下,代码如下:

number = 'hello'try:	print(number[500])	#数组越界访问,抛出IndexError异常except IndexError:	print("下标越界啦!")finally:	print("finally!")print("继续运行...")		#运行
登录后复制

结果如下,数据越界访问异常被捕获到后,先执行except 语句块,完毕后接着执行了finally语句块。因为异常被执行,所以后面代码继续运行。

下标越界啦!finally!
继续运行...
登录后复制

  对try语句块进行修改,打印abc变量值,因为abc变量没定义,所以会出现不会被捕获的NameError异常信号,代码如下所示:

number = 'hello'try:	print(abc)	#变量未被定义,抛出NameError异常except IndexError:	print("下标越界啦!")finally:	print("finally!")print("继续运行...")	#不运行
登录后复制

结果如下,因为NameError异常信号没法被处理,所以解释器将程序中断,并将错误信息输出,但这过程中依然会执行finally语句块的内容。因为程序被迫中断了,所以后面代码不运行。

finally!	#异常没被捕获,也执行了finallyTraceback (most recent call last):
	File "E:/Test_code/test.py",line 3,in <module>
   		print("abc")NameError: name 'abc' is not defined
登录后复制
登录后复制

  理解到这里,相信:try…finally…这种机制应该也不难理解了,因为省略了except 捕获异常机制,所以异常不可能被处理,解释器会将程序中断,并将错误信息输出,但finally语句块的内容依然会被执行。例子代码如下:

number = 'hello'try:	print(abc)	#变量未被定义,抛出NameError异常finally:	print("finally!")print("继续运行...")
登录后复制

运行结果:

finally!	#异常没被捕获,也执行了finallyTraceback (most recent call last):
	File "E:/Test_code/test.py",line 3,in <module>
   		print("abc")NameError: name 'abc' is not defined
登录后复制
登录后复制

4、assert断言处理机制

  assert语句先判断assert后面紧跟的语句是True还是False,如果是True则继续往下执行语句,如果是False则中断程序,将错误信息输出。

assert 1 == 1 	#为True正常运行assert 1 == 2	#为False,终止程序,错误信息输出
登录后复制

5、with…as处理机制

  with…as一般常用在文件处理上,我们平时在使用类似文件的流对象时,使用完毕后要调用close方法关闭,很麻烦,这里with…as语句提供了一个非常方便且人性的替代方法,即使突发情况也能正常关闭文件。举个例子代码如下,open打开文件后将返回的文件流对象赋值给fd,然后在with语句块中使用。

with open('e:/test.txt','r') as fd:
	fd.read()
	print(abc)	#变量未被定义,程序终止,错误信息输出print("继续运行...")
登录后复制

  正常情况下,这里的with语句块完毕之后,会自动关闭文件。但如果with语句执行中发生异常,如代码中的变量未定义异常,则会采用默认异常处理机制,程序终止,错误信息输出,后面代码不被运行,文件也会正常关闭。

三、python异常自定义

  说了这么多异常的使用,终于可以回到我前言所说的在实际项目中存在的问题,即错误码的返回和数值的返回是冲突的(因为错误码也是数值),这时候便可以用异常的抛出和捕获来完成错误码的传递,即try和except 。但系统发生异常时抛出的是系统本身定义好的异常类型,跟自己的错误码又有何关系?这就是我接下来要说的内容:如何定义自己的异常并且能够被except 所捕获

1、异常自定义

  实际开发中,有时候系统提供的异常类型往往都不能满足开发的需求。这时候就要使用到异常的自定义啦,你可以通过创建一个新的异常类来拥有自己的异常。自己定义的异常类继承自 Exception 类,可以直接继承,或者间接继承。栗子举起来:

class MyException(Exception):
    '''自定义的异常类'''
    def __init__(self, error_num):	#异常类对象的初始化属性
        self.error_num = error_num    def __str__(self):				#返回异常类对象说明信息
        err_info = ['超时错误','接收错误']
        return err_info[self.error_num]
登录后复制

  该类继承自Exception 类,并且新类的名字为MyException,这跟前面我们一直在用的IndexError这个异常类一样,都是继承自Exception 类。__init__为构造函数,当我们创建对象时便会自动调用,__str__为对象说明信息函数,当使用print输出对象的时候,只要自己定义了__str__方法,那么就会打印从在这个方法中return的数据。
  即print(MyException(0))时,便可打印“超时错误”这个字符串,print(MyException(1))时,便可打印“接收错误”这个字符串,心细的你应该可以理解,MyException(x)为临时对象(x是传入错误码参数,这里只定义了0和1),与a = MyException(x),a为对象一个样子 。 这里有一个好玩的说法,在python中方法名如果是__xxxx__()的,那么就有特殊的功能,因此叫做“魔法”方法。

2、异常抛出raise

  现在我们自己定义的错误定义好了(上面的MyException),怎么能像IndexError一样让except捕获到呢?于是乎raise关键字派上用场。我们在异常机制中用try…except时,一般都是将可能产生的错误代码放到try语句块中,这时出现异常则系统便会自动将其抛出,比如IndexError,这样except就能捕获到,所以我们只要将自定义的异常在需要的时候将其抛出即可。
  raise 唯一的一个参数指定了要被抛出的异常。它必须是一个异常的实例或者是异常的类(也就是 Exception 的子类),那么我们刚刚定义的异常类就可以用啦,举个简单例子:

try:
    raise MyException(0)	# 自己定义的错误类,将错误码为0的错误抛出except MyException as e:
    print(e) 	  			# 输出的是__str__返回的内容,即“超时错误”
登录后复制

  这里我直接将自己定义的错误抛出,…as e就是把得到的错误当成对象e,这样才可以访问其属性和方法。因为自己定义的错误中可以支持多个错误码(本质还是MyException这个错误),所以便可实现传入不同错误码就可打印不同错误信息。

3、异常捕获

  只要我们在try中将错误raise出来,except就可以捕获到(当然,异常必须是Exception 子类才能被捕获),将前面两个例子整合起来,代码如下:

'''错误码:0代表超时错误,1代表接收错误'''class MyException(Exception):
    '''自定义的异常类'''
    def __init__(self, error_num):	# 异常类对象的初始化属性
        self.error_num= error_num    def __str__(self):				# 返回异常类对象指定错误码的信息
        err_info = ['超时错误','接收错误']
        return err_info[self.error_num]def fun()
	raise MyException(1) 			# 抛出异常对象,传入错误码1def demo_main():
    try:
        fun()
    except MyException as ex:		# 这里要使用MyException进行捕获,对象为ex
        print(ex) 	   				# 输出的是__str__部分返回的内容,即“接收错误”
        print(ex.error_num) 		# 输出的是__init__中定义的error_num,即1demo_main()							#此处开始运行
登录后复制

  代码从demo_main函数开始执行,进入try语句块,语句块中的fun()函数模拟代码运行失败时raise 自定义的异常,except 正常接收后通过as 关键字得到异常对象,访问该异常对象,便可正常输出自定义的异常信息和自定义的错误码。

四、异常使用注意事项

此注意事项参考博文:异常机制使用细则.

1、不要太依赖异常机制

  python 的异常机制非常方便,对于信息的传递中十分好用(这里信息的传递主要有三种,参数传递,全局变量传递,以及异常机制传递),但滥用异常机制也会带来一些负面影响。过度使用异常主要表现在两个方面:①把异常和普通错误混淆在一起,不再编写任何错误处理代码,而是以简单地引发异常来代苦所有的错误处理。②使用异常处理来代替流程控制。例子如下:

buf = "hello"#例1:使用异常处理来遍历arr数组的每个元素try:
    i = 0    
    while True:
        print (buf [i])
        i += 1except:
    pass#例2:使用流程控制避免下标访问异常i = 0while i < len(buf ):
    print(buf [i])
    i += 1
登录后复制

  例1中假如循环过度便会下标访问异常,这时候把错误抛出,再进行一系列处理,显然是不可取的,因为异常机制的效率比正常的流程控制效率差,显然例2中简单的业务流程就可以避开这种错误。所以不要熟悉了异常的使用方法后,遇到这种简单逻辑,便不管三七二十一引发异常后再进行解决。对于完全己知的错误和普通的错误,应该编写处理这种错误的代码,增加程序的健壮性。只有对于外部的、不能确定和预知的运行时错误才使用异常

2、不要在 try 块中引入太多的代码

  在 try 块里放置大量的代码,这看上去很“简单”,代码框架很容易理解,但因为 try 块里的代码过于庞大,业务过于复杂,就会造成 try 块中出现异常的可能性大大增加,从而导致分析异常原因的难度也大大增加。
  而且当块过于庞大时,就难免在 try 块后紧跟大量的 except 块才可以针对不同的异常提供不同的处理逻辑。在同一个 try 块后紧跟大量的 except 块则需要分析它们之间的逻辑关系,反而增加了编程复杂度。所以,可以把大块的 try 块分割成多个小块,然后分别捕获并处理异常。

3、不要忽略捕获到的异常

  不要忽略异常!既然己捕获到异常,那么 except 块理应做些有用的事情,及处理并修复异常。except 块整个为空,或者仅仅打印简单的异常信息都是不妥的!具体的处理方式为:
处理异常。对异常进行合适的修复,然后绕过异常发生的地方继续运行;或者用别的数据进行计算,以代替期望的方法返回值;或者提示用户重新操作,总之,程序应该尽量修复异常,使程序能恢复运行。
重新引发新异常。把在当前运行环境下能做的事情尽量做完,然后进行异常转译,把异常包装成当前层的异常,重新传给上层调用者。
在合适的层处理异常
。如果当前层不清楚如何处理异常,就不要在当前层使用 except 语句来捕获该异常,让上层调用者来负责处理该异常。

总结

  本文从系统默认的异常起手,说明了什么是异常并总结了系统常见的异常类,接着写了怎么自定义异常,从异常的定义到抛出再到获取完成自定义异常的定义和使用,最后再总结了python异常使用时的注意事项。

以上就是读懂Python的异常机制的详细内容,更多请关注靠谱客其它相关文章!

最后

以上就是自由日记本为你收集整理的读懂Python的异常机制的全部内容,希望文章能够帮你解决读懂Python的异常机制所遇到的程序开发问题。

如果觉得靠谱客网站的内容还不错,欢迎将靠谱客网站推荐给程序员好友。

本图文内容来源于网友提供,作为学习参考使用,或来自网络收集整理,版权属于原作者所有。
点赞(77)

评论列表共有 0 条评论

立即
投稿
返回
顶部