概述
本篇文章给大家带来了关于python的相关知识,其中主要介绍了关于装饰器的相关问题,包括了闭包、装饰器、使用多个装饰器、带参数的装饰器等等内容,下面一起来看一下,希望对大家有帮助。
推荐学习:python视频教程
一、闭包
要了解什么是装饰器(decorator),我们首先需要知道闭包(closure)的概念。
闭包,又称闭包函数或者闭合函数,通俗一点来讲,当某个函数被当成对象返回时还夹带了外部变量,就形成了一个闭包。
以打印Hello World为例,我们先来看一下嵌套函数的结构应该是什么样的:
def print_msg(msg):
def printer():
print(msg)
printer()print_msg('Hello World')# Hello World
登录后复制
执行 print_msg('Hello World')
相当于执行了 printer()
,也就是执行 print(msg)
,所以将输出 Hello World
。
我们再来看一下如果是闭包,该是什么样的结构:
def print_msg(msg):
def printer():
print(msg)
return printer
my_msg = print_msg('Hello World')my_msg()# Hello World
登录后复制
执行 print_msg('Hello World')
实际上是返回了如下这样一个函数,它夹带了外部变量 'Hello World'
:
def printer():
print('Hello World')
登录后复制
于是调用 my_msg
就相当于执行 printer()
。
那么如何判断一个函数是否是闭包函数呢?闭包函数的 __closure__
属性里面定义了一个元组用于存放所有的cell对象,每个cell对象保存了这个闭包中所有的外部变量。而普通函数的 __closure__
属性为 None
。
def outer(content):
def inner():
print(content)
return innerprint(outer.__closure__)
# Noneinner = outer('Hello World')print(inner.__closure__)
# (<cell at 0x0000023FB1FD0B80: str object at 0x0000023FB1DC84F0>,)
登录后复制
由此可见 outer
函数不是闭包,而 inner
函数是闭包。
我们还可以查看闭包所携带的外部变量:
print(inner.__closure__[0].cell_contents)# Hello World
登录后复制
说了那么多,那么闭包究竟有什么用呢?闭包存在的意义就是它夹带了外部变量(私货),如果它不夹带私货,那么就和普通的函数没有任何区别。
闭包的优点如下:
- 局部变量无法共享和长久的保存,而全局变量可能造成变量污染,闭包既可以长久的保存变量又不会造成全局污染。
- 闭包使得函数内局部变量的值始终保持在内存中,不会在外部函数调用后被自动清除。
二、装饰器
我们先考虑这样一个场景,假设先前编写的一个函数已经实现了4个功能,为简便起见,我们用 print
语句来代表每一个具体的功能:
def module():
print('功能1')
print('功能2')
print('功能3')
print('功能4')
登录后复制
现在,由于某种原因,你需要为 module
这个函数新增一个 功能5
,你完全可以这样修改:
def module():
print('功能1')
print('功能2')
print('功能3')
print('功能4')
print('功能5')
登录后复制
但在现实业务中,直接做出这样的修改往往是比较危险的(会变得不易于维护)。那么如何在不修改原函数的基础上去为它新添一个功能呢?
你可能已经想到了使用之前的闭包知识:
def func_5(original_module):
def wrapper():
original_module()
print('功能5')
return wrapper
登录后复制
func_5
代表该函数主要用于实现 功能5
,我们接下来将 module
传入进去来观察效果:
new_module = func_5(module)new_module()# 功能1# 功能2# 功能3# 功能4# 功能5
登录后复制
可以看出,我们的新模块:new_module
已经实现了 功能5
。
当然,Python有更简洁的写法(称之为语法糖),我们可以将@符号与装饰器函数的名称一起使用,并将其放置在要装饰的函数的定义上方:
def func_5(original_module):
def wrapper():
original_module()
print('功能5')
return wrapper@func_5def module():
print('功能1')
print('功能2')
print('功能3')
print('功能4')module()# 功能1# 功能2# 功能3# 功能4# 功能5
登录后复制
基于此,我们可以在不修改原函数的基础上完成计时任务(计算原函数的运行时间),如下:
def timer(func):
def wrapper():
import time
tic = time.time()
func()
toc = time.time()
print('程序用时: {}s'.format(toc - tic))
return wrapper@timerdef make_list():
return [i * i for i in range(10**7)]my_list = make_list()# 程序用时: 0.8369960784912109s
登录后复制
事实上,my_list
并不是列表,直接打印会显示 None
,这是因为我们的 wrapper
函数没有设置返回值。如果需要获得 make_list
的返回值,可以这样修改 wrapper
函数:
def wrapper():
import time
tic = time.time()
a = func()
toc = time.time()
print('程序用时: {}s'.format(toc - tic))
return a
登录后复制
三、使用多个装饰器
假如我们要为 module
新添 功能5
和 功能6
(按数字顺序),那该如何做呢?
好在Python允许同时使用多个装饰器:
def func_5(original_module):
def wrapper():
original_module()
print('功能5')
return wrapperdef func_6(original_module):
def wrapper():
original_module()
print('功能6')
return wrapper@func_6@func_5def module():
print('功能1')
print('功能2')
print('功能3')
print('功能4')module()# 功能1# 功能2# 功能3# 功能4# 功能5# 功能6
登录后复制
上述过程实际上等价于:
def module():
print('功能1')
print('功能2')
print('功能3')
print('功能4')new_module = func_6(func_5(module))new_module()
登录后复制
此外,需要注意的是,在使用多个装饰器时,最靠近函数定义的装饰器会最先装饰该函数,如果我们改变装饰顺序,则输出结果也将改变:
@func_5@func_6def module():
print('功能1')
print('功能2')
print('功能3')
print('功能4')module()# 功能1# 功能2# 功能3# 功能4# 功能6# 功能5
登录后复制
四、被装饰的函数带有参数
如果被装饰的函数带有参数,那该如何去构造装饰器呢?
考虑这样一个函数:
def pide(a, b):
return a / b
登录后复制
当b=0 时会出现 ZeropisionError
。如何在避免修改该函数的基础上给出一个更加人性化的提醒呢?
因为我们的 pide
函数接收两个参数,所以我们的 wrapper
函数也应当接收两个参数:
def smart_pide(func):
def wrapper(a, b):
if b == 0:
return '被除数不能为0!'
else:
return func(a, b)
return wrapper
登录后复制
使用该装饰器进行装饰:
@smart_pidedef pide(a, b):
return a / bprint(pide(3, 0))# 被除数不能为0!print(pide(3, 1))# 3.0
登录后复制
如果不知道要被装饰的函数有多少个参数,我们可以使用下面更为通用的模板:
def decorator(func):
def wrapper(*args, **kwargs):
# ...
res = func(*args, **kwargs)
# ...
return res # 也可以不return
return wrapper
登录后复制
五、带参数的装饰器
我们之前提到的装饰器都没有带参数,即语法糖 @decorator
中没有参数,那么该如何写一个带参数的装饰器呢?
考虑这样一个场景。假如我们在为 module
添加新功能时,希望能够加上实现该功能的开发人员的花名,则可以这样构造装饰器(以 功能5
为例):
def func_5_with_name(name=None):
def func_5(original_module):
def wrapper():
original_module()
print('功能5由{}实现'.format(name))
return wrapper return func_5
登录后复制
效果如下:
@func_5_with_name(name='若水')def module():
print('功能1')
print('功能2')
print('功能3')
print('功能4')module()# 功能1# 功能2# 功能3# 功能4# 功能5由若水实现
登录后复制
对于这种三层嵌套函数,我们可以这样理解:当为 func_5_with_name
指定了参数后,func_5_with_name(name='若水')
实际上返回了一个 decorator
,于是 @func_5_with_name(name='若水')
就相当于 @decorator
。
六、使用类作为装饰器
将类作为装饰器,我们需要实现 __init__
方法和 __call__
方法。
以计时器为例,具体实现如下:
class Timer:
def __init__(self, func):
self.func = func def __call__(self):
import time
tic = time.time()
self.func()
toc = time.time()
print('用时: {}s'.format(toc - tic))@Timerdef make_list():
return [i**2 for i in range(10**7)]make_list()# 用时: 2.928966999053955s
登录后复制
如果想要自定义生成列表的长度并获得列表(即被装饰的函数带有参数情形),我们就需要在 __call__
方法中传入相应的参数,具体如下:
class Timer:
def __init__(self, func):
self.func = func def __call__(self, num):
import time
tic = time.time()
res = self.func(num)
toc = time.time()
print('用时: {}s'.format(toc - tic))
return res@Timerdef make_list(num):
return [i**2 for i in range(num)]my_list = make_list(10**7)# 用时: 2.8219943046569824sprint(len(my_list))# 10000000
登录后复制
如果要构建带参数的类装饰器,则不能把 func
传入 __init__
中,而是传入到 __call__
中,同时 __init__
用来初始化类装饰器的参数。
接下来我们使用类装饰器来复现第五章节中的效果:
class Func_5:
def __init__(self, name=None):
self.name = name def __call__(self, func):
def wrapper():
func()
print('功能5由{}实现'.format(self.name))
return wrapper@Func_5('若水')def module():
print('功能1')
print('功能2')
print('功能3')
print('功能4')module()# 功能1# 功能2# 功能3# 功能4# 功能5由若水实现
登录后复制
七、内置装饰器
Python中有许多内置装饰器,这里仅介绍最常见的三种:@classmethod
、@staticmethod
和 @property
。
7.1 @classmethod
@classmethod
用于装饰类中的函数,使用它装饰的函数不需要进行实例化也可调用。需要注意的是,被装饰的函数不需要 self
参数,但第一个参数需要是表示自身类的 cls
参数,它可以来调用类的属性,类的方法,实例化对象等。
具体请看下例:
class A:
num = 100
def func1(self):
print('功能1')
@classmethod
def func2(cls):
print('功能2')
print(cls.num)
cls().func1()A.func2()# 功能2# 100# 功能1
登录后复制
7.2 @staticmethod
@staticmethod
同样用来修饰类中的方法,使用它装饰的函数的参数没有任何限制(即无需传入 self
参数),并且可以不用实例化调用该方法。当然,实例化后调用该方法也是允许的。
具体如下:
class A:
@staticmethod
def add(a, b):
return a + bprint(A.add(2, 3))# 5print(A().add(2, 3))# 5
登录后复制
7.3 @property
使用 @property
装饰器,我们可以直接通过方法名来访问类方法,不需要在方法名后添加一对 ()
小括号。
class A:
@property
def printer(self):
print('Hello World')a = A()a.printer# Hello World
登录后复制
除此之外,@property
还可以用来防止类的属性被修改。考虑如下场景
class A:
def __init__(self):
self.name = 'ABC'a = A()print(a.name)# ABCa.name = 1print(a.name)# 1
登录后复制
可以看出类中的属性 name
可以被随意修改。如果要防止修改,则可以这样做
class A:
def __init__(self):
self.name_ = 'ABC'
@property
def name(self):
return self.name_
a = A()print(a.name)# ABCa.name = 1print(a.name)# AttributeError: can't set attribute
登录后复制
推荐学习:python视频教程
以上就是归纳总结Python中的装饰器知识点的详细内容,更多请关注靠谱客其它相关文章!
最后
以上就是干净白云为你收集整理的归纳总结Python中的装饰器知识点的全部内容,希望文章能够帮你解决归纳总结Python中的装饰器知识点所遇到的程序开发问题。
如果觉得靠谱客网站的内容还不错,欢迎将靠谱客网站推荐给程序员好友。
发表评论 取消回复