我是靠谱客的博主 平常楼房,这篇文章主要介绍Python可视化总结之matplotlib.pyplot基本参数详解,现在分享给大家,希望可以做个参考。

本篇文章给大家带来了关于Python的相关知识,其中主要整理了matplotlib.pyplot绘图的基本参数的相关问题,包括了figure、xlabel、grid等等内容,下面一起来看一下,希望对大家有帮助。

【相关推荐:Python3视频教程 】

1.matplotlib简介

matplotlib 库是 Python 中绘制二维和三维图表的数据可视化工具

特点:
使用简单绘图语句实现复杂绘图效果
以交互式操作实现渐趋精细的图形效果
使用嵌入式 LaTex 输出具有印刷级别的图表、科学表达式和符号文本
对图表的组成元素实现精细化控制

三种绘图接口

pyplot:面向当前图

axes:面向对象

Pylab:沿用 matlab 风格

本篇文章使用plot绘图(展示变量的趋势变化 )展示绘图的基本参数,使用numpy库获得绘图数据(随机),最后出来的图形并非经过仔细思考,一切以展示图形参数为主!!!

使用的库:

复制代码
1
2
import matplotlib.pyplot as plt import numpy as np
登录后复制

2.图形组成元素的函数用法

plot():展示变量的趋势变化

使用方法:plt.plot(x, y, c,ls, lw, label, alpha, **kwargs)

x,y:x,y 轴上的数值

c:设置颜色

ls:折线图的线条风格

lw:折线图的线条宽度

label:标记图形内容的标签文本

alpha:透明度

**kwargs:指定使用的是 line2D 属性

2.1. figure():背景颜色

使 用 方 法 : figure(num=None, figsize=None, dpi=None, facecolor=None,

edgecolor=None, frameon=True, FigureClass=Figure, clear=False, **kwargs)

num :

如果此参数没有提供,则一个新的 figure 对象将被创建,同时增加 figure 的计数数值,此数值被保存在 figure 对象的一个数字属性当中。如果有此参数,且存在对应 id 的 figure 对象,则激活对于 id 的 figure 对象。如果对应 id 的 figur 对象不存在,则创建它并返回它。如果 num 的值是字符串,则将窗口标题设置为此字符串

figsize:以英寸为单位的宽高,缺省值为 rc figure.figsize (1 英寸等于 2.54 厘米)

dpi:图形分辨率,缺省值为 rc figure.dpi

facecolor:背景色

复制代码
1
2
3
4
5
6
7
8
9
10
plt.figure(figsize=(10, 10)) x = np.linspace(0.05, 10, 1000) # 在0.05到10的区间中,等差选取1000个,端点不属于 y = np.sin(x) plt.rcParams['font.sans-serif'] = ['SimHei'] plt.rcParams['axes.unicode_minus'] = False plt.plot(x, y, color='red', ls='-', label='sinx') plt.show()
登录后复制

2.2 xlim()和 ylim():设置 x,y 轴的数值显示范围

使用方法:plt.xlim(xmin,xmax)

xmin:x 轴上的最小值

xmax:x 轴上的最大值

2.3 xlabel()和 ylabel():设置 x,y 轴的标签文本

使用方法:plt.xlabel(fontsize, verticalalignment, horizontalalignment, rotation, bbox)

fontsize:数字或者(small,large,medium)

verticalalignment:距离坐标轴的位置(top,bottom,center,baseline)

hoizontalalignment:位置(center,right,left)

ratation:位置(vertical,horizontal,vertical)

bbox:添加边框

2.4 grid():绘制刻度线的网格线

使用方法:plt.grid(linestyle, color)

2.5 axhline():绘制平行于 x 轴额度水平参考线

使用方法:plt.axhline(y, c, ls, lw, label)

y:水平参考线的出发点

复制代码
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
plt.figure(figsize=(10, 10)) x = np.linspace(0.05, 10, 1000) # 在0.05到10的区间中,等差选取1000个,端点不属于 y = np.sin(x) plt.rcParams['font.sans-serif'] = ['SimHei'] plt.rcParams['axes.unicode_minus'] = False plt.plot(x, y, color='red', ls='-', label='sinx') plt.xlim(1, 10) plt.ylim(-1, 1) plt.xlabel('x轴') plt.ylabel('y轴') plt.grid(ls=':', color='blue') # 设置网格,颜色为蓝色 plt.axhline(0.5, color='green', lw=2, label="分割线") # 绘制平行于x轴的水平参考线,绿色,名称 plt.show()
登录后复制

(上图中绿色的线即为axjline()添加的参考线)

2.6 axvspan():绘制垂直于 x 轴的参考区域

使用方法:plt.axvspan( xmin, xmax ,facecolor, alpha)

xmin:参考区域的起始位置

xmax:参考区域的终止位置

facecolor:参考区域的填充颜色

alpha:参考区域填充颜色的透明度,[0~1]

注:其使用方法也可以用在 axhspan()上

在上一段代码添加

复制代码
1
2
3
4
plt.axvspan(xmin=2, xmax=5, facecolor='r', alpha=0.2) # 绘制垂直于x轴的参考区域
登录后复制

即得到(注意:此段是区域)

2.7 xticks(),yticks()

获取或设置当前 x 轴或 y 轴刻度位置和标签(即设置 x 或 y 轴的标 签)

可以理解为设置xilim和ylim一样的效果,但可以指定范围和距离

复制代码
1
plt.xticks(list(range(0, 12, 1))) # 调整刻度范围和刻度标签
登录后复制

注意看x轴,从原来的0~10到现在的0~11,可以通过设置第三个参数设置步长,这里设置为1

2.8 annotate():添加图形内容细节的指向型注释文本

函数方法:plt.annotate()

s:注释文本内容

xy:被注释的坐标点

xytext:注释文字的坐标位置

weight:设置字体线形(Ultralight,light,normal,regular,book,medium,roman,semibold,demibold,demi,bold,heavy,extrabold,black)

color:设置字体颜色;也可以设置 RGB 或 RGBA 类型的颜色;但必须为[0,1]之间的浮点 数

xycoords= 参数如下

figure points:图左下角的点

figure pixels:图左下角的像素

figure fraction:图的左下部分

axes points:坐标轴左下的点

axes pixels:坐标轴左下的像素

data:使用被注释对象的坐标系统

arrowprops:箭头参数,参数类型为字典 dict

width:箭头的宽度

headwidth:箭头底部以点为单位的宽度

headlength:箭头的长度

shrink:总长度的一部分,从两端“收缩”

facecolor:箭头颜色(如果设置了 arrowstyle 关键字,上面的参数都不可以用,可

以用这些:

-

->

-[

|-|

-|>

<->

<|-

<|-|>

fancy

simple

wedge

复制代码
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
plt.annotate('local', xy=(2, 1), xytext=(0.5, 0.5), weight='bold', color='red', xycoords="data", arrowprops= dict(arrowstyle="->", connectionstyle='arc3', color='b'), bbox= dict(boxstyle="rarrow", pad=0.6, fc="yellow", ec='k', lw=1, alpha=0.5) )
登录后复制

这里的黄色箭头和蓝色细长线即为参数方法添加的参数,实际使用过程中根据自己的实际所需使用,可以认为添加对图像的一些解释

2.9 bbox:给标题增加外框

(boxstyle:方框外形;circle:椭圆;darrow:双向箭头;larrow:箭头向左;rarrow:箭

头向右;round:圆角矩形;round4:椭长方形;roundtooth:波浪形边框 1;sawtooth:

波浪形边框 2;square:长方形)

2.10 . text():添加图形内容细节的无指向型注释文本(水印)

函数方法:plt.text()

x,y:表示坐标轴上的值

weight:

ultralightlight

normal

regular

book

medium

roman

semibold

demibold

demi

bold

heavy

extrabold

black

xycoodrds:

figure points:图左下角的点

figure pixels:图左下角的像素

figure fraction:图的左下部分

axes points:坐标轴左下的点

data:使用被注释对象的坐标系统

arrowprops:箭头参数,参数类型为字典 dict

width:箭头的宽度

headwidth:箭头底部以点为单位的宽度

headlength:箭头的长度

shrink:总长度的一部分,从两端“收缩”

facecolor:箭头颜色

bbox:给标题增加外框

boxstyle:方框外形

circle:椭圆

darrow:双向箭头

larrow:箭头向左

rarrow:箭头向右

round:圆角矩形

round4:椭长方形

roundtooth:波浪形边框 1

sawtooth:波浪形边框 2

square:长方形

复制代码
1
2
3
4
plt.text(1, 1, "y=sinx", weight='bold', color ='b')
登录后复制

这里设置在坐标(1,1)上,即文字下面y=sinx的蓝色字段

2.11. title():添加图形内容的标题

复制代码
1
plt.title("正弦函数")
登录后复制

2.12. legend():标示不同图形的文本标签图例

使用方法:plt.legeng()

图例在图中的地理位置:

best

upper right

upper left

lower left

lower right

right

center left

center right

lower center

upper center

center

复制代码
1
plt.legend(loc="lower left") # 设置图例位置
登录后复制

2.13 table():向子图中添加表格

plt.table(cellText=None, cellColours=None, cellloc='right' ,colWidths=None,

rowLabels=None, rowColours=None, collLabels=None, colColours=None,

collloc='center', loc='bpttpm', bbox=None, edges='closed', **kwargs)

cellText:表格单元格文本。类型为二维字符串列表

cellColours:表格单元格背景色。类型为二位颜色值列表

cellloc:表格单元格文本的对齐方式。默认值为right

colWidths:表格单元格宽度。类型为浮点数列表

rowLabels:表格行表头文本。类型为字符串列表

rowColours:表格行表头背景色。类型为颜色列表

colLabels:表格列表头文本。类型为字符串列表

colLoc:表格行表头文本对齐方式。默认 right

colColours:表格列表头背景色。类型为颜色列表

loc:单元格相对于子图的位置

bbox:绘制表格的边界框,如果此参数不为 None,将会覆盖 loc 参数

edges:单元格边线,该属性会影响各类单元格背景色

3. 完整代码显示

复制代码
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
import matplotlib.pyplot as plt import numpy as np plt.figure(figsize=(10, 10)) x = np.linspace(0.05, 10, 1000) # 在0.05到10的区间中,等差选取1000个,端点不属于 y = np.sin(x) plt.rcParams['font.sans-serif'] = ['SimHei'] plt.rcParams['axes.unicode_minus'] = False plt.plot(x, y, color='red', ls='-', label='sinx') plt.xlim(1, 10) plt.ylim(-1, 1) plt.xlabel('x轴') plt.ylabel('y轴') plt.grid(ls=':', color='blue') # 设置网格,颜色为蓝色 plt.axhline(0.5, color='green', lw=2, label="分割线") # 绘制平行于x轴的水平参考线,绿色,名称 plt.axvspan(xmin=2, xmax=5, facecolor='r', alpha=0.2) # 绘制垂直于x轴的参考区域 plt.axhspan(ymin=(-3**0.5)/2, ymax=(3**0.5)/2, facecolor='w', alpha=0.2) plt.legend(loc="lower left") # 设置图例位置 plt.annotate('local', xy=(2, 1), xytext=(0.5, 0.5), weight='bold', color='red', xycoords="data", arrowprops= dict(arrowstyle="->", connectionstyle='arc3', color='b'), bbox= dict(boxstyle="rarrow", pad=0.6, fc="yellow", ec='k', lw=1, alpha=0.5) ) plt.xticks(list(range(0, 12, 1))) # 调整刻度范围和刻度标签 plt.text(1, 1, "y=sinx", weight='bold', color ='b') plt.title("正弦函数") plt.show()
登录后复制

这串代码用于显示中文字符

复制代码
1
2
plt.rcParams['font.sans-serif'] = ['SimHei'] plt.rcParams['axes.unicode_minus'] = False
登录后复制

无论画什么图,最后都得使用plt.show()用于展示图片,否则输出为空

4.折线图的线条风格

复制代码
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
-:实线样式 --:短横线样式 -.:点划线样式 ::虚线样式 .:点标记 O:圆标记 V:倒三角标记 ^:正三角标记 <:左三角标记 >:右三角表示 1:下箭头标记13 2:上箭头标记 3:左箭头标记 4:右箭头标记 S:正方形标记 p:五边形标记 *:星形标记 H:六边形标记 +:加号标记 X:x 标记 D:菱形标记 |:竖直线标记 _:水平线标记
登录后复制

5. 常用颜色缩写

复制代码
1
2
3
4
5
6
7
8
b 蓝色 g 绿色 r 红色 c 青色 m 品红色· y 黄色 k 黑色 w 白色
登录后复制

【相关推荐:Python3视频教程 】

以上就是Python可视化总结之matplotlib.pyplot基本参数详解的详细内容,更多请关注靠谱客其它相关文章!

最后

以上就是平常楼房最近收集整理的关于Python可视化总结之matplotlib.pyplot基本参数详解的全部内容,更多相关Python可视化总结之matplotlib内容请搜索靠谱客的其他文章。

本图文内容来源于网友提供,作为学习参考使用,或来自网络收集整理,版权属于原作者所有。
点赞(100)

评论列表共有 0 条评论

立即
投稿
返回
顶部