概述
基本思想:从未排序的序列中找到一个最小的元素,放到第一位,再从剩余未排序的序列中找到最小的元素,放到第二位,依此类推,直到所有元素都已排序完毕。假设序列元素总共n+1个,则我们需要找n轮,就可以使该序列排好序。在每轮中,我们可以这样做:用未排序序列的第一个元素和后续的元素依次相比较,如果后续元素小,则后续元素和第一个元素交换位置放到,这样一轮后,排在第一位的一定是最小的。这样进行n轮,就可排序。
原理图
图1:
图2:
初始数据不敏感,不管初始的数据有没有排好序,都需要经历N2/2次比较,这对于一些原本排好序,或者近似排好序的序列来说并不具有优势。在最好的情况下,即所有的排好序,需要0次交换,最差的情况,倒序,需要N-1次交换。
数据交换的次数较少,如果某个元素位于正确的最终位置上,则它不会被移动。在最差情况下也只需要进行N-1次数据交换,在所有的完全依靠交换去移动元素的排序方法中,选择排序属于比较好的一种。
python代码实现:
def sort_choice(numbers, max_to_min=True): """ 我这没有按照标准的选择排序,假设列表长度为n,思路如下: 1、获取最大值x,将x移动到列最后。[n1, n2, n3, ... nn] 2、将x追加到排序结果[n1, n3, ... nn, n2] 3、获取排序后n-1个元素[n1, n3, ... nn],重复第一步,重复n-1次。 max_to_min是指从大到小排序,默认为true;否则从小到大排序。 对[8, 4, 1, 0, 9]排序,大致流程如下: sorted_numbers = [] [8, 4, 1, 0, 9], sorted_numbers = [9] [4, 1, 0, 8], sorted_numbers = [9, 8] [1, 0, 4], sorted_numbers = [9, 8, 4] [0, 1], sorted_numbers = [9, 8, 4, 1] [0], sorted_numbers = [9, 8, 4, 1, 0] """ if len(numbers) <= 1: return numbers sorted_list = [] index = 0 for i in xrange(len(numbers) - index): left_numbers = _get_left_numbers(numbers, max_to_min) numbers = left_numbers[:-1] sorted_list.append(left_numbers[-1]) index += 1 return sorted_list def _get_left_numbers(numbers, get_max=True): ''' 获取最大值或者最小值x,并且将x抽取出来,置于列表最后. Ex: get_max=True, [1, 4, 3] ⇒ [1, 3, 4] get_max=False, [1, 4, 3] ⇒ [4, 3 ,1] ''' max_index = 0 for i, num in enumerate(numbers): if get_max: if num > numbers[max_index]: max_index = i else: if num < numbers[max_index]: max_index = i numbers = numbers[:max_index] + numbers[max_index + 1:] + [numbers[max_index]] return numbers
测试一下:
>>> get_left_numbers([0, 4, 0, 31, 9, 19, 89,67], get_max=True) [0, 4, 0, 31, 9, 19, 67, 89] >>> get_left_numbers([0, 4, 0, 31, 9, 19, 89,67], get_max=False) [4, 0, 31, 9, 19, 89, 67, 0] >>> sort_choice([0, 4, 0, 31, 9, 19, 89,67], max_to_min=False) [0, 0, 4, 9, 19, 31, 67, 89] >>> sort_choice([0, 4, 0, 31, 9, 19, 89,67], max_to_min=True) [89, 67, 31, 19, 9, 4, 0, 0]
最后
以上就是激动蜜粉为你收集整理的图文讲解选择排序算法的原理及在Python中的实现的全部内容,希望文章能够帮你解决图文讲解选择排序算法的原理及在Python中的实现所遇到的程序开发问题。
如果觉得靠谱客网站的内容还不错,欢迎将靠谱客网站推荐给程序员好友。
本图文内容来源于网友提供,作为学习参考使用,或来自网络收集整理,版权属于原作者所有。
发表评论 取消回复