我是靠谱客的博主 刻苦西牛,最近开发中收集的这篇文章主要介绍Python基于回溯法子集树模板解决取物搭配问题实例,觉得挺不错的,现在分享给大家,希望可以做个参考。

概述

本文实例讲述了Python基于回溯法子集树模板解决取物搭配问题。分享给大家供大家参考,具体如下:

问题

有5件不同的上衣,3条不同的裤子,4顶不同的帽子,从中取出一顶帽子、一件上衣和一条裤子作为一种搭配,问有多少种不同的搭配?

分析

换个角度看,现有头、身、腿三个元素,每个元素都有各自的几种状态。
头元素有['帽1', '帽2', '帽3', '帽4']共4种状态,身元素有['衣1', '衣2', '衣3', '衣4', '衣5']共5种状态,腿元素有['裤1', '裤2', '裤3']共3种状态
从头开始,自上而下,遍历每个元素的所有状态。

解的长度是固定的。

这里特别注意:每个元素的状态数目不同!!!

套用子集树模板即可

代码

```python
'''取物排列问题'''
n = 3 # 3个元素

头、身、腿3个元素各自的状态空间

a = [['帽1', '帽2', '帽3', '帽4'],
['衣1', '衣2', '衣3', '衣4', '衣5'],
['裤1', '裤2', '裤3']]
x = [0]*n # 一个解,长度固定,3元数组
X = [] # 一组解

冲突检测

def conflict(k):
return False # 无冲突

套用子集树模板

def match(k): # 到达第k个元素
global n, a, x, X
if k >= n: # 超出最尾的元素
  print(x)
  #X.append(x[:]) # 保存(一个解)
else:
  for i in a[k]: # 直接a[k],若间接则range(len(a[k]))。 遍历第k个元素的对应的所有选择状态,不同的元素状态数目不同
    x[k] = i
    if not conflict(k): # 剪枝
      match(k+1)

测试

match(0) # 从头(第0个元素)开始

效果图

更多关于Python相关内容感兴趣的读者可查看本站专题:《Python数据结构与算法教程》、《Python函数使用技巧总结》、《Python字符串操作技巧汇总》及《Python入门与进阶经典教程》

希望本文所述对大家Python程序设计有所帮助。

最后

以上就是刻苦西牛为你收集整理的Python基于回溯法子集树模板解决取物搭配问题实例的全部内容,希望文章能够帮你解决Python基于回溯法子集树模板解决取物搭配问题实例所遇到的程序开发问题。

如果觉得靠谱客网站的内容还不错,欢迎将靠谱客网站推荐给程序员好友。

本图文内容来源于网友提供,作为学习参考使用,或来自网络收集整理,版权属于原作者所有。
点赞(114)

评论列表共有 0 条评论

立即
投稿
返回
顶部