概述
Object.defineProperty()
Object.defineProperty() 方法会直接在一个对象上定义一个新属性,或者修改一个对象的现有属性,并返回此对象。
概念:该方法允许精确地添加或修改对象的属性。对象里目前存在的属性描述符有两种主要形式:数据描述符和存取描述符。
数据描述符是一个具有值(value)的属性,该值可以是可写的,也可以是不可写的。存取描述符是由 getter 函数和 setter 函数所描述的属性。一个描述符只能是这两者其中之一;不能同时是两者。
语法
Object.defineProperty(obj, prop, descriptor)
- 参数
- obj 要定义属性的对象。
- prop 要定义或修改的属性的名称。
- descriptor 要定义或修改的属性描述符。
例子
const object1 = {};
Object.defineProperty(object1, 'property1', {
value: 42,
writable: false
});
object1.property1 = 77;
// throws an error in strict mode
console.log(object1.property1);
// expected output: 42
descriptor相关属性
- enumerable:定义了对象的属性是否可以在 for…in 循环和 Object.keys() 中被枚举。当且仅当该属性的 enumerable 键值为 true 时,该属性才会出现在对象的枚举属性中。默认为
false
。
var o = {};
Object.defineProperty(o, "a", { value : 1, enumerable: true });
Object.defineProperty(o, "b", { value : 2, enumerable: false });
Object.defineProperty(o, "c", { value : 3 }); // enumerable 默认为 false
o.d = 4; // 如果使用直接赋值的方式创建对象的属性,则 enumerable 为 true
Object.defineProperty(o, Symbol.for('e'), {
value: 5,
enumerable: true
});
Object.defineProperty(o, Symbol.for('f'), {
value: 6,
enumerable: false
});
for (var i in o) {
console.log(i);
}
// logs 'a' and 'd' (in undefined order)
Object.keys(o); // ['a', 'd']
o.propertyIsEnumerable('a'); // true
o.propertyIsEnumerable('b'); // false
o.propertyIsEnumerable('c'); // false
o.propertyIsEnumerable('d'); // true
o.propertyIsEnumerable(Symbol.for('e')); // true
o.propertyIsEnumerable(Symbol.for('f')); // false
var p = { ...o }
p.a // 1
p.b // undefined
p.c // undefined
p.d // 4
p[Symbol.for('e')] // 5
p[Symbol.for('f')] // undefined
数据描述符可选键值:
- value
该属性对应的值。可以是任何有效的 JavaScript 值(数值,对象,函数等)。
默认为 undefined。
var o = {}; // 创建一个新对象
Object.defineProperty(o, 'a', {
value: 37
});
console.log(o.a); // logs 37
- writable:当且仅当该属性的 writable 键值为
true
时,属性的值,也就是上面的 value,才能被赋值运算符改变。默认为 false。当 writable 属性设置为 false 时,该属性被称为“不可写的”。它不能被重新赋值。
var o = {}; // 创建一个新对象
Object.defineProperty(o, 'a', {
value: 37,
writable: false
});
console.log(o.a); // logs 37
o.a = 25; // No error thrown
// (it would throw in strict mode,
// even if the value had been the same)
console.log(o.a); // logs 37. The assignment didn't work.
// strict mode
(function() {
'use strict';
var o = {};
Object.defineProperty(o, 'b', {
value: 2,
writable: false
});
o.b = 3; // throws TypeError: "b" is read-only
return o.b; // returns 2 without the line above
}());
// 如示例所示,试图写入非可写属性不会改变它,也不会引发错误。
存取描述符可选键值:
- get
属性的 getter 函数,如果没有 getter,则为 undefined。当访问该属性时,会调用此函数。执行时不传入任何参数,但是会传入 this 对象(由于继承关系,这里的this并不一定是定义该属性的对象)。该函数的返回值会被用作属性的值。
默认为 undefined。 - set
属性的 setter 函数,如果没有 setter,则为 undefined。当属性值被修改时,会调用此函数。该方法接受一个参数(也就是被赋予的新值),会传入赋值时的 this 对象。
默认为 undefined。
注意:如果一个描述符不具有 value、writable、get 和 set 中的任意一个键,那么它将被认为是一个数据描述符。如果一个描述符同时拥有 value 或 writable 和 get 或 set 键,则会产生一个异常。
例子:自定义 Setters 和 Getters
下面的例子展示了如何实现一个自存档对象。当设置temperature 属性时,archive 数组会收到日志条目。
function Archiver() {
var temperature = null;
var archive = [];
Object.defineProperty(this, 'temperature', {
get: function() {
console.log('get!');
return temperature;
},
set: function(value) {
temperature = value;
archive.push({ val: temperature });
}
});
this.getArchive = function() { return archive; };
}
var arc = new Archiver();
arc.temperature; // 'get!'
arc.temperature = 11;
arc.temperature = 13;
arc.getArchive(); // [{ val: 11 }, { val: 13 }]
下面这个例子中,getter 总是会返回一个相同的值。
var pattern = {
get: function () {
return 'I alway return this string,whatever you have assigned';
},
set: function () {
this.myname = 'this is my name string';
}
};
function TestDefineSetAndGet() {
Object.defineProperty(this, 'myproperty', pattern);
}
var instance = new TestDefineSetAndGet();
instance.myproperty = 'test';
// 'I alway return this string,whatever you have assigned'
console.log(instance.myproperty);
// 'this is my name string'
console.log(instance.myname);
「课堂练习」
给对象设置一个永远大于18的属性count
要求:
- 使用 Object.defineProperty 给对象设置一个属性count
- count永远大于等于18的数字
- 若给count属性赋值小于18或者不是数字,count保持原值
var obj = {}
// 在这里添加代码
console.log(obj.count) // 19
obj.count = 1
console.log(obj.count) // 19
obj.count = 'abx'
console.log(obj.count) // 19
obj.count = 27
console.log(obj.count) // 27
修改属性:
概念:如果属性已经存在,Object.defineProperty()将尝试根据描述符中的值以及对象当前的配置来修改这个属性。如果旧描述符将其configurable 属性设置为false,则该属性被认为是“不可配置的”,并且没有属性可以被改变(除了单向改变 writable 为 false)。当属性不可配置时,不能在数据和访问器属性类型之间切换。
注意:当试图改变不可配置属性(除了 value 和 writable 属性之外)的值时,会抛出TypeError,除非当前值和新值相同。
- configurable:该特性表示对象的属性是否可以被删除,以及除 value 和 writable 特性外的其他特性是否可以被修改。当且仅当该属性的 configurable 键值为 true 时,该属性的描述符才能够被改变,同时该属性也能从对应的对象上被删除。默认为 false。
var o = {};
Object.defineProperty(o, 'a', {
get() { return 1; },
configurable: false
});
Object.defineProperty(o, 'a', {
configurable: true
}); // throws a TypeError
Object.defineProperty(o, 'a', {
enumerable: true
}); // throws a TypeError
Object.defineProperty(o, 'a', {
set() {}
}); // throws a TypeError (set was undefined previously)
Object.defineProperty(o, 'a', {
get() { return 1; }
}); // throws a TypeError
// (even though the new get does exactly the same thing)
Object.defineProperty(o, 'a', {
value: 12
}); // throws a TypeError // ('value' can be changed when 'configurable' is false but not in this case due to 'get' accessor)
console.log(o.a); // logs 1
delete o.a; // Nothing happens
console.log(o.a); // logs 1
如果 o.a 的 configurable 属性为 true,则不会抛出任何错误,并且,最后,该属性会被删除。
创建属性
如果对象中不存在指定的属性,Object.defineProperty() 会创建这个属性。当描述符中省略某些字段时,这些字段将使用它们的默认值。
var o = {}; // 创建一个新对象
// 在对象中添加一个属性与数据描述符的示例
Object.defineProperty(o, "a", {
value : 37,
writable : true,
enumerable : true,
configurable : true
});
// 对象 o 拥有了属性 a,值为 37
// 在对象中添加一个设置了存取描述符属性的示例
var bValue = 38;
Object.defineProperty(o, "b", {
// 使用了方法名称缩写(ES2015 特性)
// 下面两个缩写等价于:
// get : function() { return bValue; },
// set : function(newValue) { bValue = newValue; },
get() { return bValue; },
set(newValue) { bValue = newValue; },
enumerable : true,
configurable : true
});
o.b; // 38
// 对象 o 拥有了属性 b,值为 38
// 现在,除非重新定义 o.b,o.b 的值总是与 bValue 相同
// 数据描述符和存取描述符不能混合使用
Object.defineProperty(o, "conflict", {
value: 0x9f91102,
get() { return 0xdeadbeef; }
});
// 抛出错误 TypeError: value appears only in data descriptors, get appears only in accessor descriptors
添加多个属性和默认值
考虑特性被赋予的默认特性值非常重要,通常,使用点运算符和 Object.defineProperty() 为对象的属性赋值时,数据描述符中的属性默认值是不同的,如下例所示。
var o = {};
o.a = 1;
// 等同于:
Object.defineProperty(o, "a", {
value: 1,
writable: true,
configurable: true,
enumerable: true
});
// 另一方面,
Object.defineProperty(o, "a", { value : 1 });
// 等同于:
Object.defineProperty(o, "a", {
value: 1,
writable: false,
configurable: false,
enumerable: false
});
继承属性
介绍:如果访问者的属性是被继承的,它的 get 和 set 方法会在子对象的属性被访问或者修改时被调用。如果这些方法用一个变量存值,该值会被所有对象共享。
function myclass() {
}
var value;
Object.defineProperty(myclass.prototype, "x", {
get() {
return value;
},
set(x) {
value = x;
}
});
var a = new myclass();
var b = new myclass();
a.x = 1;
console.log(b.x); // 1
这可以通过将值存储在另一个属性中解决。在 get 和 set 方法中,this 指向某个被访问和修改属性的对象。
function myclass() {
}
Object.defineProperty(myclass.prototype, "x", {
get() {
return this.stored_x;
},
set(x) {
this.stored_x = x;
}
});
var a = new myclass();
var b = new myclass();
a.x = 1;
console.log(b.x); // undefined
不像访问者属性,值属性始终在对象自身上设置,而不是一个原型。然而,如果一个不可写的属性被继承,它仍然可以防止修改对象的属性。
function myclass() {
}
myclass.prototype.x = 1;
Object.defineProperty(myclass.prototype, "y", {
writable: false,
value: 1
});
var a = new myclass();
a.x = 2;
console.log(a.x); // 2
console.log(myclass.prototype.x); // 1
a.y = 2; // Ignored, throws in strict mode
console.log(a.y); // 1
console.log(myclass.prototype.y); // 1
Object.assign()
介绍:Object.assign()
方法用于将所有可枚举属性的值从一个或多个源对象分配到目标对象。它将返回目标对象。
const target = { a: 1, b: 2 };
const source = { b: 4, c: 5 };
const returnedTarget = Object.assign(target, source);
console.log(target);
// expected output: Object { a: 1, b: 4, c: 5 }
console.log(returnedTarget);
// expected output: Object { a: 1, b: 4, c: 5 }
语法
Object.assign(target, ...sources)
-
参数
- target 目标对象。
- sources 一个或多个源对象。
-
返回值 目标对象target。
注意:如果目标对象中的属性具有相同的键,则属性将被源对象中的属性覆盖。后面的源对象的属性将类似地覆盖前面的源对象的属性。
Object.assign 方法只会拷贝源对象自身的并且可枚举的属性到目标对象。方法使用源对象的[[Get]]和目标对象的[[Set]],所以它会调用相关 getter 和 setter。因此,它分配属性,而不仅仅是复制或定义新的属性。如果合并源包含getter,这可能使其不适合将新属性合并到原型中。为了将属性定义(包括其可枚举性)复制到原型,应使用Object.getOwnPropertyDescriptor()和Object.defineProperty() 。
const o1 = { a: 1 };
const o2 = { b: 2 };
const o3 = { c: 3 };
const obj = Object.assign(o1, o2, o3);
console.log(obj); // { a: 1, b: 2, c: 3 }
console.log(o1); // { a: 1, b: 2, c: 3 }, 注意目标对象自身也会改变。
Object.create()
介绍:Object.create()方法创建一个新对象,使用现有的对象来提供新创建的对象的__proto__。
const person = {
isHuman: false,
printIntroduction: function() {
console.log(`My name is ${this.name}. Am I human? ${this.isHuman}`);
}
};
const me = Object.create(person);
me.name = 'Matthew'; // name是设置在me上的属性,而不是设置在person上
me.isHuman = true; // 继承的属性可以被覆盖
me.printIntroduction();// "My name is Matthew. Am I human? true"
语法:
Object.create(proto,[propertiesObject])
Object.create(obj, {
'property1': {
value: true,
writable: true
},
'property2': {
value: 'Hello',
writable: false
}
});
- 参数
- proto 新创建对象的原型对象。
- propertiesObject 可选。需要传入一个对象。要定义其可枚举属性或修改的属性描述符的对象。如果该参数被指定且不为 undefined。
- 返回值:在指定原型对象上添加新属性后的对象。
例子
用 Object.create实现类式继承
下面的例子演示了如何使用Object.create()来实现类式继承。这是一个所有版本JavaScript都支持的单继承。
// Shape - 父类(superclass)
function Shape() {
this.x = 0;
this.y = 0;
}
// 父类的方法
Shape.prototype.move = function(x, y) {
this.x += x;
this.y += y;
console.info('Shape moved.');
};
// Rectangle - 子类(subclass)
function Rectangle() {
Shape.call(this); // call super constructor.
}
// 子类续承父类
Rectangle.prototype = Object.create(Shape.prototype);
Rectangle.prototype.constructor = Rectangle;
var rect = new Rectangle();
console.log('rect是Rectangle的一个实例吗?',
rect instanceof Rectangle); // true
console.log('rect是Shape的一个实例吗?',
rect instanceof Shape); // true
rect.move(1, 1); // Outputs, 'Shape moved.'
如果你希望能继承到多个对象,则可以使用混入的方式。
function MyClass() {
SuperClass.call(this);
OtherSuperClass.call(this);
}
// 继承一个类
MyClass.prototype = Object.create(SuperClass.prototype);
// 混合其它
Object.assign(MyClass.prototype, OtherSuperClass.prototype);
// 重新指定constructor
MyClass.prototype.constructor = MyClass;
MyClass.prototype.myMethod = function() {
// do a thing
};
使用 Object.create 的 propertyObject参数
var o;
// 创建一个原型为null的空对象
o = Object.create(null);
o = {};
// 以字面量方式创建的空对象就相当于:
o = Object.create(Object.prototype);
o = Object.create(Object.prototype, {
// foo会成为所创建对象的数据属性
foo: {
writable:true,
configurable:true,
value: "hello"
},
// bar会成为所创建对象的访问器属性
bar: {
configurable: false,
get: function() { return 10 },
set: function(value) {
console.log("Setting `o.bar` to", value);
}
}
});
function Constructor(){}
o = new Constructor();
// 上面的一句就相当于:
o = Object.create(Constructor.prototype);
// 当然,如果在Constructor函数中有一些初始化代码,Object.create不能执行那些代码
// 创建一个以另一个空对象为原型,且拥有一个属性p的对象
o = Object.create({}, { p: { value: 42 } })
// 省略了的属性特性默认为false,所以属性p是不可写,不可枚举,不可配置的:
o.p = 24
o.p
//42
o.q = 12
for (var prop in o) {
console.log(prop)
}
//"q"
delete o.p
//false
//创建一个可写的,可枚举的,可配置的属性p
o2 = Object.create({}, {
p: {
value: 42,
writable: true,
enumerable: true,
configurable: true
}
});
「课堂练习」
使用Object.create实现下面代码
要求:
- 使用 Object.create 实现下面代码一样的效果
var People = function(){
}
People.prototype.y = 20
People.prototype.x = 40
People.prototype.showNum = function() {}
//通过构造函数创建实例
var p = new People();
console.log(p)
Object.getOwnPropertyNames()
介绍:Object.getOwnPropertyNames()方法返回一个由指定对象的所有自身属性的属性名(包括不可枚举属性)组成的数组。该数组对元素是 obj自身拥有的枚举或不可枚举属性名称字符串。 数组中枚举属性的顺序与通过 for…in 循环(或 Object.keys)迭代该对象属性时一致。数组中不可枚举属性的顺序未定义。
语法:
Object.getOwnPropertyNames(obj)
-
参数
- obj 一个对象,其自身的可枚举和不可枚举属性的名称被返回。
-
返回值: 在给定对象上找到的自身属性对应的字符串数组。
例子:
使用 Object.getOwnPropertyNames()
var arr = ["a", "b", "c"];
console.log(Object.getOwnPropertyNames(arr).sort()); // ["0", "1", "2", "length"]
// 类数组对象
var obj = { 0: "a", 1: "b", 2: "c"};
console.log(Object.getOwnPropertyNames(obj).sort()); // ["0", "1", "2"]
// 使用Array.forEach输出属性名和属性值
Object.getOwnPropertyNames(obj).forEach(function(val, idx, array) {
console.log(val + " -> " + obj[val]);
});
// 输出
// 0 -> a
// 1 -> b
// 2 -> c
//不可枚举属性
var my_obj = Object.create({}, {
getFoo: {
value: function() { return this.foo; },
enumerable: false
}
});
my_obj.foo = 1;
console.log(Object.getOwnPropertyNames(my_obj).sort()); // ["foo", "getFoo"]
注意:如果你只要获取到可枚举属性,查看Object.keys或用for…in循环(还会获取到原型链上的可枚举属性,不过可以使用hasOwnProperty()方法过滤掉)。
下面的例子演示了该方法不会获取到原型链上的属性:
function ParentClass() {}
ParentClass.prototype.inheritedMethod = function() {};
function ChildClass() {
this.prop = 5;
this.method = function() {};
}
ChildClass.prototype = new ParentClass;
ChildClass.prototype.prototypeMethod = function() {};
console.log(
Object.getOwnPropertyNames(
new ChildClass() // ["prop", "method"]
)
);
只获取不可枚举的属性
下面的例子使用了 Array.prototype.filter() 方法,从所有的属性名数组(使用Object.getOwnPropertyNames()方法获得)中去除可枚举的属性(使用Object.keys()方法获得),剩余的属性便是不可枚举的属性了:
var target = myObject;
var enum_and_nonenum = Object.getOwnPropertyNames(target);
var enum_only = Object.keys(target);
var nonenum_only = enum_and_nonenum.filter(function(key) {
var indexInEnum = enum_only.indexOf(key);
if (indexInEnum == -1) {
// 没有发现在enum_only健集中意味着这个健是不可枚举的,
// 因此返回true 以便让它保持在过滤结果中
return true;
} else {
return false;
}
});
console.log(nonenum_only);
严格模式
介绍:ECMAScript 5的严格模式是采用具有限制性JavaScript变体的一种方式,从而使代码显示地脱离“马虎模式/稀松模式/懒散模式“模式。
- 严格模式对正常的 JavaScript语义做了一些更改。
- 严格模式通过抛出错误来消除了一些原有静默错误。
- 严格模式修复了一些导致 JavaScript引擎难以执行优化的缺陷:有时候,相同的代码,严格模式可以比非严格模式下运行得更快。
- 严格模式禁用了在ECMAScript的未来版本中可能会定义的一些语法。
不支持严格模式与支持严格模式的浏览器在执行严格模式代码时会采用不同行为。
所以在没有对运行环境展开特性测试来验证对于严格模式相关方面支持的情况下,就算采用了严格模式也不一定会取得预期效果。严格模式代码和非严格模式代码可以共存,因此项目脚本可以渐进式地采用严格模式。
调用严格模式
介绍:严格模式可以应用到整个脚本或个别函数中。
为脚本开启严格模式
语法:为整个脚本文件开启严格模式,需要在所有语句之前放一个特定语句 "use strict";
(或 'use strict';
)
- 整个脚本都开启严格模式的语法
"use strict";
var v = "Hi! I'm a strict mode script!";
注意:这种语法存在陷阱,试想合并一个严格模式的脚本和一个非严格模式的脚本:合并后的脚本代码看起来是严格模式有可能有问题。合并均为严格模式的脚本或均为非严格模式的都没问题,建议按一个个函数去开启严格模式。
为函数开启严格模式
介绍:您也可以将整个脚本的内容用一个函数包括起来,然后在这个外部函数中使用严格模式。这样做就可以消除合并的问题,但是这就意味着您必须要在函数作用域外声明一个全局变量。
语法:将 “use strict”; (或 ‘use strict’; )声明放在函数体所有语句之前。
function strict() {
// 函数级别严格模式语法
'use strict';
function nested() {
return "And so am I!";
}
return "Hi! I'm a strict mode function! " + nested();
}
function notStrict() {
return "I'm not strict.";
}
严格模式中的变化
介绍:严格模式同时改变了语法及运行时行为。变化通常分为这几类:
一、将过失错误转成异常
介绍:在严格模式下, 某些先前被接受的过失错误将会被认为是异常. JavaScript被设计为能使新人开发者更易于上手, 所以有时候会给本来错误操作赋予新的不报错误的语义. 有时候这可以解决当前的问题, 但有时候却会给以后留下更大的问题. 严格模式则把这些失误当成错误, 以便可以发现并立即将其改正.
- 严格模式下无法再意外创建全局变量。在普通的JavaScript里面给一个错误命名的变量名赋值会使全局对象新增一个属性并继续“工作”(尽管将来可能会失败:在现代的JavaScript中有可能)。严格模式中意外创建全局变量被抛出错误替代:
"use strict";
// 假如有一个全局变量叫做mistypedVariable
mistypedVaraible = 17; // 因为变量名拼写错误
// 这一行代码就会抛出 ReferenceError
- 严格模式会使引起静默失败(silently fail,注:不报错也没有任何效果)的赋值操作抛出异常. 例如, NaN 是一个不可写的全局变量. 在正常模式下, 给 NaN 赋值不会产生任何作用; 开发者也不会受到任何错误反馈. 但在严格模式下, 给 NaN 赋值会抛出一个异常. 任何在正常模式下引起静默失败的赋值操作 (给不可写属性赋值, 给只读属性(getter-only)赋值, 给不可扩展对象(non-extensible object)的新属性赋值) 都会抛出异常:
"use strict";
// 给不可写属性赋值
var obj1 = {};
Object.defineProperty(obj1, "x", { value: 42, writable: false });
obj1.x = 9; // 抛出TypeError错误
// 给只读属性赋值
var obj2 = { get x() { return 17; } };
obj2.x = 5; // 抛出TypeError错误
// 给不可扩展对象的新属性赋值
var fixed = {};
Object.preventExtensions(fixed);
fixed.newProp = "ohai"; // 抛出TypeError错误
- 在严格模式下, 试图删除不可删除的属性时会抛出异常(之前这种操作不会产生任何效果):
"use strict";
delete Object.prototype; // 抛出TypeError错误
- 严格模式要求函数的参数名唯一. 在正常模式下, 最后一个重名参数名会掩盖之前的重名参数. 之前的参数仍然可以通过 arguments[i] 来访问, 还不是完全无法访问. 然而, 这种隐藏毫无意义而且可能是意料之外的 (比如它可能本来是打错了), 所以在严格模式下重名参数被认为是语法错误:
function sum(a, a, c) { // !!! 语法错误
"use strict";
return a + a + c; // 代码运行到这里会出错
}
- 严格模式禁止八进制数字语法. ECMAScript并不包含八进制语法, 但所有的浏览器都支持这种以零(0)开头的八进制语法: 0644 === 420 还有 “ 45” === “%”.
有些新手开发者认为数字的前导零没有语法意义, 所以他们会用作对齐措施 — 但其实这会改变数字的意义! 八进制语法很少有用并且可能会错误使用, 所以严格模式下八进制语法会引起语法错误:
"use strict";
var sum = 015 + // !!! 语法错误
197 +
142;
- ECMAScript 6中的严格模式禁止设置primitive值的属性.不采用严格模式,设置属性将会简单忽略(no-op),采用严格模式,将抛出TypeError错误
(function() {
"use strict";
false.true = ""; //TypeError
(14).sailing = "home"; //TypeError
"with".you = "far away"; //TypeError
})();
二、简化变量的使用
介绍:严格模式简化了代码中变量名字映射到变量定义的方式. 很多编译器的优化是依赖存储变量X位置的能力:这对全面优化JavaScript代码至关重要. JavaScript有些情况会使得代码中名字到变量定义的基本映射只在运行时才产生. 严格模式移除了大多数这种情况的发生, 所以编译器可以更好的优化严格模式的代码.
- 严格模式禁用 with. with所引起的问题是块内的任何名称可以映射(map)到with传进来的对象的属性, 也可以映射到包围这个块的作用域内的变量(甚至是全局变量), 这一切都是在运行时决定的: 在代码运行之前是无法得知的. 严格模式下, 使用 with 会引起语法错误, 所以就不会存在 with 块内的变量在运行时才决定引用到哪里的情况了:
"use strict";
var x = 17;
with (obj) { // !!! 语法错误
// 如果没有开启严格模式,with中的这个x会指向with上面的那个x,还是obj.x?
// 如果不运行代码,我们无法知道,因此,这种代码让引擎无法进行优化,速度也就会变慢。
x;
}
一种取代 with的简单方法是,将目标对象赋给一个短命名变量,然后访问这个变量上的相应属性.
- 严格模式下的 eval 不再为上层范围(surrounding scope,注:包围eval代码块的范围)引入新变量. 在正常模式下, 代码 eval(“var x;”) 会给上层函数(surrounding function)或者全局引入一个新的变量 x . 这意味着, 一般情况下, 在一个包含 eval 调用的函数内所有没有引用到参数或者局部变量的名称都必须在运行时才能被映射到特定的定义 (因为 eval 可能引入的新变量会覆盖它的外层变量). 在严格模式下 eval 仅仅为被运行的代码创建变量, 所以 eval 不会使得名称映射到外部变量或者其他局部变量:
var x = 17;
var evalX = eval("'use strict'; var x = 42; x");
console.assert(x === 17);
console.assert(evalX === 42);
相应的, 如果函数 eval 被在严格模式下的eval(…)以表达式的形式调用时, 其代码会被当做严格模式下的代码执行. 当然也可以在代码中显式开启严格模式, 但这样做并不是必须的.
function strict1(str) {
"use strict";
return eval(str); // str中的代码在严格模式下运行
}
function strict2(f, str) {
"use strict";
return f(str); // 没有直接调用eval(...): 当且仅当str中的代码开启了严格模式时
// 才会在严格模式下运行
}
function nonstrict(str) {
return eval(str); // 当且仅当str中的代码开启了"use strict",str中的代码才会在严格模式下运行
}
strict1("'Strict mode code!'");
strict1("'use strict'; 'Strict mode code!'");
strict2(eval, "'Non-strict code.'");
strict2(eval, "'use strict'; 'Strict mode code!'");
nonstrict("'Non-strict code.'");
nonstrict("'use strict'; 'Strict mode code!'");
因此,在 eval 执行的严格模式代码下,变量的行为与严格模式下非 eval 执行的代码中的变量相同。
- 严格模式禁止删除声明变量。delete name 在严格模式下会引起语法错误:
"use strict";
var x;
delete x; // !!! 语法错误
eval("var y; delete y;"); // !!! 语法错误
三、让eval和arguments变的简单
介绍:严格模式让arguments和eval少了一些奇怪的行为。两者在通常的代码中都包含了很多奇怪的行为: eval会添加删除绑定,改变绑定好的值,还会通过用它索引过的属性给形参取别名的方式修改形参. 虽然在未来的ECMAScript版本解决这个问题之前,是不会有补丁来完全修复这个问题,但严格模式下将eval和arguments作为关键字对于此问题的解决是很有帮助的。
- 名称 eval 和 arguments 不能通过程序语法被绑定或赋值. 以下的所有尝试将引起语法错误:
"use strict";
eval = 17;
arguments++;
++eval;
var obj = { set p(arguments) { } };
var eval;
try { } catch (arguments) { }
function x(eval) { }
function arguments() { }
var y = function eval() { };
var f = new Function("arguments", "'use strict'; return 17;");
- 严格模式下,参数的值不会随 arguments 对象的值的改变而变化。在正常模式下,对于第一个参数是 arg 的函数,对 arg 赋值时会同时赋值给 arguments[0],反之亦然(除非没有参数,或者 arguments[0] 被删除)。严格模式下,函数的 arguments 对象会保存函数被调用时的原始参数。arguments[i] 的值不会随与之相应的参数的值的改变而变化,同名参数的值也不会随与之相应的 arguments[i] 的值的改变而变化。
function f(a) {
"use strict";
a = 42;
return [a, arguments[0]];
}
var pair = f(17);
console.assert(pair[0] === 42);
console.assert(pair[1] === 17);
- 不再支持
arguments.callee
。正常模式下,arguments.callee 指向当前正在执行的函数。这个作用很小:直接给执行函数命名就可以了!此外,arguments.callee 十分不利于优化,例如内联函数,因为 arguments.callee 会依赖对非内联函数的引用。在严格模式下,arguments.callee 是一个不可删除属性,而且赋值和读取时都会抛出异常:
"use strict";
var f = function() { return arguments.callee; };
f(); // 抛出类型错误
四、“安全的” JavaScript
介绍:严格模式下更容易写出“安全”的JavaScript。现在有些网站提供了方式给用户编写能够被网站其他用户执行的JavaScript代码。在浏览器环境下,JavaScript能够获取用户的隐私信息,因此这类Javascript必须在运行前部分被转换成需要申请访问禁用功能的权限。没有很多的执行时检查的情况,Javascript的灵活性让它无法有效率地做这件事。一些语言中的函数普遍出现,以至于执行时检查他们会引起严重的性能损耗。做一些在严格模式下发生的小改动,要求用户提交的JavaScript开启严格模式并且用特定的方式调用,就会大大减少在执行时进行检查的必要。
- 在严格模式下通过this传递给一个函数的值不会被强制转换为一个对象。对一个普通的函数来说,this总会是一个对象:不管调用时this它本来就是一个对象;还是用布尔值,字符串或者数字调用函数时函数里面被封装成对象的this;还是使用undefined或者null调用函数式this代表的全局对象(使用call, apply或者bind方法来指定一个确定的this)。这种自动转化为对象的过程不仅是一种性能上的损耗,同时在浏览器中暴露出全局对象也会成为安全隐患,因为全局对象提供了访问那些所谓安全的JavaScript环境必须限制的功能的途径。所以对于一个开启严格模式的函数,指定的this不再被封装为对象,而且如果没有指定this的话它值是undefined:
"use strict";
function fun() { return this; }
console.assert(fun() === undefined);
console.assert(fun.call(2) === 2);
console.assert(fun.apply(null) === null);
console.assert(fun.call(undefined) === undefined);
console.assert(fun.bind(true)() === true);
- 在严格模式中再也不能通过广泛实现的ECMAScript扩展“游走于”JavaScript的栈中。在普通模式下用这些扩展的话,当一个叫fun的函数正在被调用的时候,fun.caller是最后一个调用fun的函数,而且fun.arguments包含调用fun时用的形参。这两个扩展接口对于“安全”JavaScript而言都是有问题的,因为他们允许“安全的”代码访问"专有"函数和他们的(通常是没有经过保护的)形参。如果fun在严格模式下,那么fun.caller和fun.arguments都是不可删除的属性而且在存值、取值时都会报错:
function restricted() {
"use strict";
restricted.caller; // 抛出类型错误
restricted.arguments; // 抛出类型错误
}
function privilegedInvoker() {
return restricted();
}
privilegedInvoker();
- 严格模式下的arguments不会再提供访问与调用这个函数相关的变量的途径。在一些旧时的ECMAScript实现中arguments.caller曾经是一个对象,里面存储的属性指向那个函数的变量。这是一个安全隐患,因为它通过函数抽象打破了本来被隐藏起来的保留值;它同时也是引起大量优化工作的原因。出于这些原因,现在的浏览器没有实现它。但是因为它这种历史遗留的功能,arguments.caller在严格模式下同样是一个不可被删除的属性,在赋值或者取值时会报错:
"use strict";
function fun(a, b) {
"use strict";
var v = 12;
return arguments.caller; // 抛出类型错误
}
fun(1, 2); // 不会暴露v(或者a,或者b)
五、为未来的ECMAScript版本铺平道路
介绍:未来版本的ECMAScript很有可能会引入新语法,ECMAScript5中的严格模式就提早设置了一些限制来减轻之后版本改变产生的影响。如果提早使用了严格模式中的保护机制,那么做出改变就会变得更容易。
- 在严格模式中一部分字符变成了保留的关键字。这些字符包括implements, interface, let, package, private, protected, public, static和yield。在严格模式下,你不能再用这些名字作为变量名或者形参名。
function package(protected) { // !!!
"use strict";
var implements; // !!!
interface: // !!!
while (true) {
break interface; // !!!
}
function private() { } // !!!
}
function fun(static) { 'use strict'; } // !!!
- 严格模式禁止了不在脚本或者函数层面上的函数声明。在浏览器的普通代码中,在“所有地方”的函数声明都是合法的。这并不在ES5规范中(甚至是ES3)!这是一种针对不同浏览器中不同语义的一种延伸。未来的ECMAScript版本很有希望制定一个新的,针对不在脚本或者函数层面进行函数声明的语法。在严格模式下禁止这样的函数声明对于将来ECMAScript版本的推出扫清了障碍:
"use strict";
if (true) {
function f() { } // !!! 语法错误
f();
}
for (var i = 0; i < 5; i++) {
function f2() { } // !!! 语法错误
f2();
}
function baz() { // 合法
function eit() { } // 同样合法
}
这种禁止放到严格模式中并不是很合适,因为这样的函数声明方式从ES5中延伸出来的。但这是ECMAScript委员会推荐的做法,浏览器就实现了这一点。
浏览器的严格模式
概念:主流浏览器现在实现了严格模式。但是不要盲目的依赖它,因为市场上仍然有大量的浏览器版本只部分支持严格模式或者根本就不支持(比如IE10之前的版本)。严格模式改变了语义。依赖这些改变可能会导致没有实现严格模式的浏览器中出现问题或者错误。谨慎地使用严格模式,通过检测相关代码的功能保证严格模式不出问题。最后,记得在支持或者不支持严格模式的浏览器中测试你的代码。如果你只在不支持严格模式的浏览器中测试,那么在支持的浏览器中就很有可能出问题,反之亦然。
最后
以上就是害羞过客为你收集整理的11.对象的方法 严格模式的全部内容,希望文章能够帮你解决11.对象的方法 严格模式所遇到的程序开发问题。
如果觉得靠谱客网站的内容还不错,欢迎将靠谱客网站推荐给程序员好友。
发表评论 取消回复