概述
参考博文:https://blog.csdn.net/u012771236/article/details/44975831
size:图像总像素个数
u:图像的平均灰度
w0:前景像素点占整幅图像大小的比例
u0:前景像素点的平均值
w1:背景像素点占整幅图像大小的比例
u0:背景像素点的平均值
g:类间方差
u = w0 * u0 + w1 * u1 (1)
g = w0*(u - u0)^2 + w1*(u - u1)^2 (2)
将(1)代入(2)得:
g = w0 * w1 * (u0 - u1)^2
import numpy as np
import cv2
import matplotlib.pyplot as plt # plt 用于显示图片
def OTSU_enhance(img_gray, th_begin=0, th_end=256, th_step=1):
assert img_gray.ndim == 2, "must input a gary_img"
max_g = 0
suitable_th = 0
for threshold in range(th_begin, th_end, th_step):
bin_img = img_gray > threshold
print(bin_img)
bin_img_inv = img_gray <= threshold
fore_pix = np.sum(bin_img)
back_pix = np.sum(bin_img_inv)
if 0 == fore_pix:
最后
以上就是激动枕头为你收集整理的python实现大津算法的全部内容,希望文章能够帮你解决python实现大津算法所遇到的程序开发问题。
如果觉得靠谱客网站的内容还不错,欢迎将靠谱客网站推荐给程序员好友。
本图文内容来源于网友提供,作为学习参考使用,或来自网络收集整理,版权属于原作者所有。
发表评论 取消回复