我是靠谱客的博主 高高小刺猬,最近开发中收集的这篇文章主要介绍pytorch入门Pytorch的入门使用,觉得挺不错的,现在分享给大家,希望可以做个参考。

概述

Pytorch的入门使用

目标

  1. 知道张量和Pytorch中的张量
  2. 知道pytorch中如何创建张量
  3. 知道pytorch中tensor的常见方法
  4. 知道pytorch中tensor的数据类型
  5. 知道pytorch中如何实现tensor在cpu和cuda中转化

1. 张量Tensor

张量是一个统称,其中包含很多类型:

  1. 0阶张量:标量、常数,0-D Tensor
  2. 1阶张量:向量,1-D Tensor
  3. 2阶张量:矩阵,2-D Tensor
  4. 3阶张量
  5. N阶张量

2. Pytorch中创建张量

  1. 使用python中的列表或者序列创建tensor

    torch.tensor([[1., -1.], [1., -1.]])
    tensor([[ 1.0000, -1.0000],
            [ 1.0000, -1.0000]])
    
  2. 使用numpy中的数组创建tensor

    torch.tensor(np.array([[1, 2, 3], [4, 5, 6]]))
    tensor([[ 1,  2,  3],
            [ 4,  5,  6]])
    
  3. 使用torch的api创建tensor

    1. torch.empty(3,4)创建3行4列的空的tensor,会用无用数据进行填充

    2. torch.ones([3,4]) 创建3行4列的全为1的tensor

    3. torch.zeros([3,4])创建3行4列的全为0的tensor

    4. torch.rand([3,4]) 创建3行4列的随机值的tensor,随机值的区间是[0, 1)

      >>> torch.rand(2, 3)
      tensor([[ 0.8237,  0.5781,  0.6879],
      [ 0.3816,  0.7249,  0.0998]])
      
    5. torch.randint(low=0,high=10,size=[3,4]) 创建3行4列的随机整数的tensor,随机值的区间是[low, high)

      >>> torch.randint(3, 10, (2, 2))
      tensor([[4, 5],
      	[6, 7]])
      
    6. torch.randn([3,4]) 创建3行4列的随机数的tensor,随机值的分布式均值为0,方差为1

3. Pytorch中tensor的常用方法

  1. 获取tensor中的数据(当tensor中只有一个元素可用):tensor.item()

    In [10]: a = torch.tensor(np.arange(1))
    
    In [11]: a
    Out[11]: tensor([0])
    
    In [12]: a.item()
    Out[12]: 0
    
  2. 转化为numpy数组

    In [55]: z.numpy()
    Out[55]:
    array([[-2.5871205],
           [ 7.3690367],
           [-2.4918075]], dtype=float32)
    
  3. 获取形状:tensor.size()

    In [72]: x
    Out[72]:
    tensor([[    1,     2],
            [    3,     4],
            [    5,    10]], dtype=torch.int32)
    
    In [73]: x.size()
    Out[73]: torch.Size([3, 2])
    
  4. 形状改变:tensor.view((3,4))。类似numpy中的reshape,是一种浅拷贝,仅仅是形状发生改变

    In [76]: x.view(2,3)
    Out[76]:
    tensor([[    1,     2,     3],
            [    4,     5,    10]], dtype=torch.int32)
    
  5. 获取阶数:tensor.dim()

    In [77]: x.dim()
    Out[77]: 2
    
  6. 获取最大值:tensor.max()

    In [78]: x.max()
    Out[78]: tensor(10, dtype=torch.int32)
    
  7. 转置:tensor.t()

    In [79]: x.t()
    Out[79]:
    tensor([[    1,     3,     5],
            [    2,     4, 	  10]], dtype=torch.int32)
    
  8. tensor[1,3] 获取tensor中第一行第三列的值

  9. tensor[1,3]=100 对tensor中第一行第三列的位置进行赋值100

  10. tensor的切片

In [101]: x
Out[101]:
tensor([[1.6437, 1.9439, 1.5393],
        [1.3491, 1.9575, 1.0552],
        [1.5106, 1.0123, 1.0961],
        [1.4382, 1.5939, 1.5012],
        [1.5267, 1.4858, 1.4007]])

In [102]: x[:,1]
Out[102]: tensor([1.9439, 1.9575, 1.0123, 1.5939, 1.4858])

4. tensor的数据类型

tensor中的数据类型非常多,常见类型如下:

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-UQiKZDlJ-1613665144794)(…/images/1.2/tensor的数据类型.png)]

上图中的Tensor types表示这种type的tensor是其实例

  1. 获取tensor的数据类型:tensor.dtype

    In [80]: x.dtype
    Out[80]: torch.int32
    
  2. 创建数据的时候指定类型

    In [88]: torch.ones([2,3],dtype=torch.float32)
    Out[88]:
    tensor([[9.1167e+18, 0.0000e+00, 7.8796e+15],
            [8.3097e-43, 0.0000e+00, -0.0000e+00]])
    
  3. 类型的修改

    In [17]: a
    Out[17]: tensor([1, 2], dtype=torch.int32)
    
    In [18]: a.type(torch.float)
    Out[18]: tensor([1., 2.])
    
    In [19]: a.double()
    Out[19]: tensor([1., 2.], dtype=torch.float64)
    

5. tensor的其他操作

  1. tensor和tensor相加

    In [94]: x = x.new_ones(5, 3, dtype=torch.float)
    
    In [95]: y = torch.rand(5, 3)
    
    In [96]: x+y
    Out[96]:
    tensor([[1.6437, 1.9439, 1.5393],
            [1.3491, 1.9575, 1.0552],
            [1.5106, 1.0123, 1.0961],
            [1.4382, 1.5939, 1.5012],
            [1.5267, 1.4858, 1.4007]])
    In [98]: torch.add(x,y)
    Out[98]:
    tensor([[1.6437, 1.9439, 1.5393],
            [1.3491, 1.9575, 1.0552],
            [1.5106, 1.0123, 1.0961],
            [1.4382, 1.5939, 1.5012],
            [1.5267, 1.4858, 1.4007]])
    In [99]: x.add(y)
    Out[99]:
    tensor([[1.6437, 1.9439, 1.5393],
            [1.3491, 1.9575, 1.0552],
            [1.5106, 1.0123, 1.0961],
            [1.4382, 1.5939, 1.5012],
            [1.5267, 1.4858, 1.4007]])
    In [100]: x.add_(y)  #带下划线的方法会对x进行就地修改
    Out[100]:
    tensor([[1.6437, 1.9439, 1.5393],
            [1.3491, 1.9575, 1.0552],
            [1.5106, 1.0123, 1.0961],
            [1.4382, 1.5939, 1.5012],
            [1.5267, 1.4858, 1.4007]])
    
    In [101]: x #x发生改变
    Out[101]:
    tensor([[1.6437, 1.9439, 1.5393],
            [1.3491, 1.9575, 1.0552],
            [1.5106, 1.0123, 1.0961],
            [1.4382, 1.5939, 1.5012],
            [1.5267, 1.4858, 1.4007]])
    

    注意:带下划线的方法(比如:add_)会对tensor进行就地修改

  2. tensor和数字操作

    In [97]: x +10
    Out[97]:
    tensor([[11., 11., 11.],
            [11., 11., 11.],
            [11., 11., 11.],
            [11., 11., 11.],
            [11., 11., 11.]])
    
  3. CUDA中的tensor

    CUDA(Compute Unified Device Architecture),是NVIDIA推出的运算平台。 CUDA™是一种由NVIDIA推出的通用并行计算架构,该架构使GPU能够解决复杂的计算问题。

    torch.cuda这个模块增加了对CUDA tensor的支持,能够在cpu和gpu上使用相同的方法操作tensor

    通过.to方法能够把一个tensor转移到另外一个设备(比如从CPU转到GPU)

    #device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
    if torch.cuda.is_available():
        device = torch.device("cuda")          # cuda device对象
        y = torch.ones_like(x, device=device)  # 创建一个在cuda上的tensor
        x = x.to(device)                       # 使用方法把x转为cuda 的tensor
        z = x + y
        print(z)
        print(z.to("cpu", torch.double))       # .to方法也能够同时设置类型
        
    >>tensor([1.9806], device='cuda:0')
    >>tensor([1.9806], dtype=torch.float64)
    

通过前面的学习,可以发现torch的各种操作几乎和numpy一样

最后

以上就是高高小刺猬为你收集整理的pytorch入门Pytorch的入门使用的全部内容,希望文章能够帮你解决pytorch入门Pytorch的入门使用所遇到的程序开发问题。

如果觉得靠谱客网站的内容还不错,欢迎将靠谱客网站推荐给程序员好友。

本图文内容来源于网友提供,作为学习参考使用,或来自网络收集整理,版权属于原作者所有。
点赞(52)

评论列表共有 0 条评论

立即
投稿
返回
顶部