概述
Github: nghuyong/text-correction-papers
专门开了一个仓库来持续追踪文本纠错相关的论文,包括「中文拼写检查Chinese Spell Checking (CSC)」 和 「语法纠错 Grammatical Error Correction (GEC)」。 推荐直接移步Github查看,每篇论文有tag标记,体验更佳。欢迎提PR,来一起完善。
2022
- Non-Autoregressive Chinese ASR Error Correction with Phonological Training NAACL2022 [pdf]
- MuCGEC: a Multi-Reference Multi-Source Evaluation Dataset for Chinese Grammatical Error Correction NAACL2022 [pdf]
- ErAConD: Error Annotated Conversational Dialog Dataset for Grammatical Error Correction NAACL [pdf]
- CRASpell: A Contextual Typo Robust Approach to Improve Chinese Spelling Correction ACL2022 [pdf] [code]
- MDCSpell: A Multi-task Detector-Corrector Framework for Chinese Spelling Correction ACL2022
- The Past Mistake is the Future Wisdom: Error-driven Contrastive Probability Optimization for Chinese Spell Checking ACL2022 [pdf]
- Improving the Efficiency of Grammatical Error Correction with Erroneous Span Detection and Correction ACL2022 [pdf]
- Ensembling and Knowledge Distilling of Large Sequence Taggers for Grammatical Error Correction ACL2022 [pdf]
- Interpretability for Language Learners Using Example-Based Grammatical Error Correction ACL2022 [pdf]
- “Is Whole Word Masking Always Better for Chinese BERT?”: Probing on Chinese Grammatical Error Correction ACL2022 [pdf]
- Type-Driven Multi-Turn Corrections for Grammatical Error Correction ACL2022 [pdf]
- A Unified Strategy for Multilingual Grammatical Error Correction with Pre-trained Cross-Lingual Language Model preprint [pdf]
- General and Domain Adaptive Chinese Spelling Check with Error Consistent Pretraining preprint [pdf] [code]
2021
- Correcting Chinese Spelling Errors with Phonetic Pre-training ACL2021 [pdf] [code]
- Read, Listen, and See: Leveraging Multimodal Information Helps Chinese Spell Checking ACL2021 [pdf] [code]
- PLOME: Pre-training with Misspelled Knowledge for Chinese Spelling Correction ACL2021 [pdf] [code]
- Exploration and Exploitation: Two Ways to Improve Chinese Spelling Correction Models ACL2021 [pdf] [code]
- PHMOSpell: Phonological and Morphological Knowledge Guided Chinese Spelling Check ACL2021 [pdf]
- Global Attention Decoder for Chinese Spelling Error Correction ACL2021 [pdf]
- Dynamic Connected Networks for Chinese Spelling Check ACL2021 [pdf]
- Instantaneous Grammatical Error Correction with Shallow Aggressive Decoding ACL2021 [pdf] [code]
- Tail-to-Tail Non-Autoregressive Sequence Prediction for Chinese Grammatical Error Correction ACL2021 [pdf] [code]
- Grammatical Error Correction as GAN-like Sequence Labeling ACL2021 [pdf]
- A Simple Recipe for Multilingual Grammatical Error Correction ACL2021 [pdf]
- New Dataset and Strong Baselines for the Grammatical Error Correction of Russian ACL2021 [pdf]
- Do Grammatical Error Correction Models Realize Grammatical Generalization? ACL2021 [pdf]
- SpellBERT: A Lightweight Pretrained Model for Chinese Spelling Check EMNLP2021 [pdf] [code]
- LM-Critic: Language Models for Unsupervised Grammatical Error Correction EMNLP2021 [pdf]
- Is this the end of the gold standard? A straightforward reference-less grammatical error correction metric EMNLP2021 [pdf]
- Beyond Grammatical Error Correction: Improving L1-influenced research writing in English using pre-trained encoder-decoder models EMNLP2021 [pdf] [code]
- Grammatical Error Correction with Contrastive Learning in Low Error Density Domains EMNLP2021 [pdf]
- Neural Quality Estimation with Multiple Hypotheses for Grammatical Error Correction NAACL2021 [pdf] [code]
- DCSpell: A Detector-Corrector Framework for Chinese Spelling Error Correction SIGIR2021 [pdf]
- Think Twice: A Post-Processing Approach for the Chinese Spelling Error Correction AppliedScience [pdf]
2020
- Spelling Error Correction with Soft-Masked BERT ACL2020 [pdf]
- Spellgcn: Incorporating phonological and visual similarities into language models for chinese spelling check ACL2020 [pdf] [code]
- Encoder-Decoder Models Can Benefit from Pre-trained Masked Language Models in Grammatical Error Correction ACL2020 [pdf] [code]
- Grammatical Error Correction Using Pseudo Learner Corpus Considering Learner’s Error Tendency ACL2020 [pdf]
- Chunk-based Chinese Spelling Check with Global Optimization EMNLP2020 [pdf]
- Grammatical Error Correction in Low Error Density Domains: A New Benchmark and Analyses EMNLP2020 [pdf]
- Improving Grammatical Error Correction Models with Purpose-Built Adversarial Examples EMNLP2020 [pdf]
- Improving the Efficiency of Grammatical Error Correction with Erroneous Span Detection and Correction EMNLP2020 [pdf]
- A Self-Refinement Strategy for Noise Reduction in Grammatical Error Correction EMNLP2020 [pdf]
- Improving Grammatical Error Correction with Machine Translation Pairs EMNLP2020 [pdf]
- Adversarial Grammatical Error Correction EMNLP2020 [pdf]
- MaskGEC: Improving Neural Grammatical Error Correction via Dynamic Masking AAAL2020 [pdf]
- Combining ResNet and Transformer for Chinese Grammatical Error Diagnosis AACL2020 [pdf]
- Overview of NLPTEA-2020 Shared Task for Chinese Grammatical Error Diagnosis AACL2020 [pdf]
Before 2020
- FASPell: A Fast, Adaptable, Simple, Powerful Chinese Spell Checker Based On DAE-Decoder Paradigm EMNLP2019 [pdf] [code]
- A Hybrid Approach to Automatic Corpus Generation for Chinese Spelling Checking EMNLP2018 [pdf] [code]
最后
以上就是超级牛排为你收集整理的文本纠错的论文看这一篇就够了的全部内容,希望文章能够帮你解决文本纠错的论文看这一篇就够了所遇到的程序开发问题。
如果觉得靠谱客网站的内容还不错,欢迎将靠谱客网站推荐给程序员好友。
本图文内容来源于网友提供,作为学习参考使用,或来自网络收集整理,版权属于原作者所有。
发表评论 取消回复