我是靠谱客的博主 傲娇曲奇,最近开发中收集的这篇文章主要介绍【无标题】,觉得挺不错的,现在分享给大家,希望可以做个参考。

概述

神经网络、深度学习、机器学习是什么?有什么区别和联系?

深度学习是由深层神经网络+机器学习造出来的词。深度最早出现在deepbeliefnetwork(深度(层)置信网络)。其出现使得沉寂多年的神经网络又焕发了青春。

GPU使得深层网络随机初始化训练成为可能。resnet的出现打破了层次限制的魔咒,使得训练更深层次的神经网络成为可能。深度学习是神经网络的唯一发展和延续。

在现在的语言环境下,深度学习泛指神经网络,神经网络泛指深度学习。在当前的语境下没有区别。定义生物神经网络主要是指人脑的神经网络,它是人工神经网络的技术原型。

人脑是人类思维的物质基础,思维的功能定位在大脑皮层,后者含有大约10^11个神经元,每个神经元又通过神经突触与大约103个其它神经元相连,形成一个高度复杂高度灵活的动态网络。

作为一门学科,生物神经网络主要研究人脑神经网络的结构、功能及其工作机制,意在探索人脑思维和智能活动的规律。

人工神经网络是生物神经网络在某种简化意义下的技术复现,作为一门学科,它的主要任务是根据生物神经网络的原理和实际应用的需要建造实用的人工神经网络模型,设计相应的学习算法,模拟人脑的某种智能活动,然后在技术上实现出来用以解决实际问题。

因此,生物神经网络主要研究智能的机理;人工神经网络主要研究智能机理的实现,两者相辅相成。

谷歌人工智能写作项目:神经网络伪原创

深度学习和神经网络的区别是什么

好文案

这两个概念实际上是互相交叉的,例如,卷积神经网络(Convolutionalneuralnetworks,简称CNNs)就是一种深度的监督学习下的机器学习模型,而深度置信网(DeepBeliefNets,简称DBNs)就是一种无监督学习下的机器学习模型。

深度学习的概念源于人工神经网络的研究。含多隐层的多层感知器就是一种深度学习结构。深度学习通过组合低层特征形成更加抽象的高层表示属性类别或特征,以发现数据的分布式特征表示。

深度学习的概念由Hinton等人于2006年提出。基于深信度网(DBN)提出非监督贪心逐层训练算法,为解决深层结构相关的优化难题带来希望,随后提出多层自动编码器深层结构。

此外Lecun等人提出的卷积神经网络是第一个真正多层结构学习算法,它利用空间相对关系减少参数数目以提高训练性能。

深度学习与神经网络有什么区别

深度学习与神经网络关系2017-01-10最近开始学习深度学习,基本上都是zouxy09博主的文章,写的蛮好,很全面,也会根据自己的思路,做下删减,细化。

五、DeepLearning的基本思想假设我们有一个系统S,它有n层(S1,…Sn),它的输入是I,输出是O,形象地表示为:I=>S1=>S2=>…..=>Sn=>O,如果输出O等于输入I,即输入I经过这个系统变化之后没有任何的信息损失(呵呵,大牛说,这是不可能的。

信息论中有个“信息逐层丢失”的说法(信息处理不等式),设处理a信息得到b,再对b处理得到c,那么可以证明:a和c的互信息不会超过a和b的互信息。这表明信息处理不会增加信息,大部分处理会丢失信息。

当然了,如果丢掉的是没用的信息那多好啊),保持了不变,这意味着输入I经过每一层Si都没有任何的信息损失,即在任何一层Si,它都是原有信息(即输入I)的另外一种表示。

现在回到我们的主题DeepLearning,我们需要自动地学习特征,假设我们有一堆输入I(如一堆图像或者文本),假设我们设计了一个系统S(有n层),我们通过调整系统中参数,使得它的输出仍然是输入I,那么我们就可以自动地获取得到输入I的一系列层次特征,即S1,…,Sn。

对于深度学习来说,其思想就是对堆叠多个层,也就是说这一层的输出作为下一层的输入。通过这种方式,就可以实现对输入信息进行分级表达了。

另外,前面是假设输出严格地等于输入,这个限制太严格,我们可以略微地放松这个限制,例如我们只要使得输入与输出的差别尽可能地小即可,这个放松会导致另外一类不同的DeepLearning方法。

上述就是DeepLearning的基本思想。六、浅层学习(ShallowLearning)和深度学习(DeepLearning)浅层学习是机器学习的第一次浪潮。

20世纪80年代末期,用于人工神经网络的反向传播算法(也叫BackPropagation算法或者BP算法)的发明,给机器学习带来了希望,掀起了基于统计模型的机器学习热潮。这个热潮一直持续到今天。

人们发现,利用BP算法可以让一个人工神经网络模型从大量训练样本中学习统计规律,从而对未知事件做预测。这种基于统计的机器学习方法比起过去基于人工规则的系统,在很多方面显出优越性。

这个时候的人工神经网络,虽也被称作多层感知机(Multi-layerPerceptron),但实际是种只含有一层隐层节点的浅层模型。

20世纪90年代,各种各样的浅层机器学习模型相继被提出,例如支撑向量机(SVM,SupportVectorMachines)、Boosting、最大熵方法(如LR,LogisticRegression)等。

这些模型的结构基本上可以看成带有一层隐层节点(如SVM、Boosting),或没有隐层节点(如LR)。这些模型无论是在理论分析还是应用中都获得了巨大的成功。

相比之下,由于理论分析的难度大,训练方法又需要很多经验和技巧,这个时期浅层人工神经网络反而相对沉寂。深度学习是机器学习的第二次浪潮。

2006年,加拿大多伦多大学教授、机器学习领域的泰斗GeoffreyHinton和他的学生RuslanSalakhutdinov在《科学》上发表了一篇文章,开启了深度学习在学术界和工业界的浪潮。

这篇文章有两个主要观点:1)多隐层的人工神经网络具有优异的特征学习能力,学习得到的特征对数据有更本质的刻画,从而有利于可视化或分类;2)深度神经网络在训练上的难度,可以通过“逐层初始化”(layer-wisepre-training)来有效克服,在这篇文章中,逐层初始化是通过无监督学习实现的。

当前多数分类、回归等学习方法为浅层结构算法,其局限性在于有限样本和计算单元情况下对复杂函数的表示能力有限,针对复杂分类问题其泛化能力受到一定制约。

深度学习可通过学习一种深层非线性网络结构,实现复杂函数逼近,表征输入数据分布式表示,并展现了强大的从少数样本集中学习数据集本质特征的能力。

(多层的好处是可以用较少的参数表示复杂的函数)深度学习的实质,是通过构建具有很多隐层的机器学习模型和海量的训练数据,来学习更有用的特征,从而最终提升分类或预测的准确性。

因此,“深度模型”是手段,“特征学习”是目的。

区别于传统的浅层学习,深度学习的不同在于:1)强调了模型结构的深度,通常有5层、6层,甚至10多层的隐层节点;2)明确突出了特征学习的重要性,也就是说,通过逐层特征变换,将样本在原空间的特征表示变换到一个新特征空间,从而使分类或预测更加容易。

与人工规则构造特征的方法相比,利用大数据来学习特征,更能够刻画数据的丰富内在信息。

七、Deeplearning与NeuralNetwork深度学习是机器学习研究中的一个新的领域,其动机在于建立、模拟人脑进行分析学习的神经网络,它模仿人脑的机制来解释数据,例如图像,声音和文本。

深度学习是无监督学习的一种。深度学习的概念源于人工神经网络的研究。含多隐层的多层感知器就是一种深度学习结构。深度学习通过组合低层特征形成更加抽象的高层表示属性类别或特征,以发现数据的分布式特征表示。

Deeplearning本身算是machinelearning的一个分支,简单可以理解为neuralnetwork的发展。

大约二三十年前,neuralnetwork曾经是ML领域特别火热的一个方向,但是后来确慢慢淡出了,原因包括以下几个方面:1)比较容易过拟合,参数比较难tune,而且需要不少trick;2)训练速度比较慢,在层次比较少(小于等于3)的情况下效果并不比其它方法更优;所以中间有大约20多年的时间,神经网络被关注很少,这段时间基本上是SVM和boosting算法的天下。

但是,一个痴心的老先生Hinton,他坚持了下来,并最终(和其它人一起Bengio、Yann.lecun等)提成了一个实际可行的deeplearning框架。

Deeplearning与传统的神经网络之间有相同的地方也有很多不同。

二者的相同在于deeplearning采用了神经网络相似的分层结构,系统由包括输入层、隐层(多层)、输出层组成的多层网络,只有相邻层节点之间有连接,同一层以及跨层节点之间相互无连接,每一层可以看作是一个logisticregression模型;这种分层结构,是比较接近人类大脑的结构的。

而为了克服神经网络训练中的问题,DL采用了与神经网络很不同的训练机制。

传统神经网络(这里作者主要指前向神经网络)中,采用的是backpropagation的方式进行,简单来讲就是采用迭代的算法来训练整个网络,随机设定初值,计算当前网络的输出,然后根据当前输出和label之间的差去改变前面各层的参数,直到收敛(整体是一个梯度下降法)。

而deeplearning整体上是一个layer-wise的训练机制。

这样做的原因是因为,如果采用backpropagation的机制,对于一个deepnetwork(7层以上),残差传播到最前面的层已经变得太小,出现所谓的gradientdiffusion(梯度扩散)。

这个问题我们接下来讨论。

八、Deeplearning训练过程8.1、传统神经网络的训练方法为什么不能用在深度神经网络BP算法作为传统训练多层网络的典型算法,实际上对仅含几层网络,该训练方法就已经很不理想。

深度结构(涉及多个非线性处理单元层)非凸目标代价函数中普遍存在的局部最小是训练困难的主要来源。

BP算法存在的问题:(1)梯度越来越稀疏:从顶层越往下,误差校正信号越来越小;(2)收敛到局部最小值:尤其是从远离最优区域开始的时候(随机值初始化会导致这种情况的发生);(3)一般,我们只能用有标签的数据来训练:但大部分的数据是没标签的,而大脑可以从没有标签的的数据中学习;8.2、deeplearning训练过程如果对所有层同时训练,时间复杂度会太高;如果每次训练一层,偏差就会逐层传递。

这会面临跟上面监督学习中相反的问题,会严重欠拟合(因为深度网络的神经元和参数太多了)。

2006年,hinton提出了在非监督数据上建立多层神经网络的一个有效方法,简单的说,分为两步,一是每次训练一层网络,二是调优,使原始表示x向上生成的高级表示r和该高级表示r向下生成的x'尽可能一致。

方法是:1)首先逐层构建单层神经元,这样每次都是训练一个单层网络。2)当所有层训练完后,Hinton使用wake-sleep算法进行调优。

将除最顶层的其它层间的权重变为双向的,这样最顶层仍然是一个单层神经网络,而其它层则变为了图模型。向上的权重用于“认知”,向下的权重用于“生成”。然后使用Wake-Sleep算法调整所有的权重。

让认知和生成达成一致,也就是保证生成的最顶层表示能够尽可能正确的复原底层的结点。

比如顶层的一个结点表示人脸,那么所有人脸的图像应该激活这个结点,并且这个结果向下生成的图像应该能够表现为一个大概的人脸图像。Wake-Sleep算法分为醒(wake)和睡(sleep)两个部分。

1)wake阶段:认知过程,通过外界的特征和向上的权重(认知权重)产生每一层的抽象表示(结点状态),并且使用梯度下降修改层间的下行权重(生成权重)。

也就是“如果现实跟我想象的不一样,改变我的权重使得我想象的东西就是这样的”。2)sleep阶段:生成过程,通过顶层表示(醒时学得的概念)和向下权重,生成底层的状态,同时修改层间向上的权重。

也就是“如果梦中的景象不是我脑中的相应概念,改变我的认知权重使得这种景象在我看来就是这个概念”。

deeplearning训练过程具体如下:1)使用自下上升非监督学习(就是从底层开始,一层一层的往顶层训练):采用无标定数据(有标定数据也可)分层训练各层参数,这一步可以看作是一个无监督训练过程,是和传统神经网络区别最大的部分(这个过程可以看作是featurelearning过程):具体的,先用无标定数据训练第一层,训练时先学习第一层的参数(这一层可以看作是得到一个使得输出和输入差别最小的三层神经网络的隐层),由于模型capacity的限制以及稀疏性约束,使得得到的模型能够学习到数据本身的结构,从而得到比输入更具有表示能力的特征;在学习得到第n-1层后,将n-1层的输出作为第n层的输入,训练第n层,由此分别得到各层的参数;2)自顶向下的监督学习(就是通过带标签的数据去训练,误差自顶向下传输,对网络进行微调):基于第一步得到的各层参数进一步fine-tune整个多层模型的参数,这一步是一个有监督训练过程;第一步类似神经网络的随机初始化初值过程,由于DL的第一步不是随机初始化,而是通过学习输入数据的结构得到的,因而这个初值更接近全局最优,从而能够取得更好的效果;所以deeplearning效果好很大程度上归功于第一步的featurelearning过程。

为什么有图卷积神经网络?

本质上说,世界上所有的数据都是拓扑结构,也就是网络结构,如果能够把这些网络数据真正的收集、融合起来,这确实是实现了AI智能的第一步。

所以,如何利用深度学习处理这些复杂的拓扑数据,如何开创新的处理图数据以及知识图谱的智能算法是AI的一个重要方向。

深度学习在多个领域的成功主要归功于计算资源的快速发展(如GPU)、大量训练数据的收集,还有深度学习从欧几里得数据(如图像、文本和视频)中提取潜在表征的有效性。

但是,尽管深度学习已经在欧几里得数据中取得了很大的成功,但从非欧几里得域生成的数据已经取得更广泛的应用,它们需要有效分析。

如在电子商务领域,一个基于图的学习系统能够利用用户和产品之间的交互以实现高度精准的推荐。在化学领域,分子被建模为图,新药研发需要测定其生物活性。

在论文引用网络中,论文之间通过引用关系互相连接,需要将它们分成不同的类别。自2012年以来,深度学习在计算机视觉以及自然语言处理两个领域取得了巨大的成功。

假设有一张图,要做分类,传统方法需要手动提取一些特征,比如纹理,颜色,或者一些更高级的特征。然后再把这些特征放到像随机森林等分类器,给到一个输出标签,告诉它是哪个类别。

而深度学习是输入一张图,经过神经网络,直接输出一个标签。特征提取和分类一步到位,避免了手工提取特征或者人工规则,从原始数据中自动化地去提取特征,是一种端到端(end-to-end)的学习。

相较于传统的方法,深度学习能够学习到更高效的特征与模式。图数据的复杂性对现有机器学习算法提出了重大挑战,因为图数据是不规则的。

每张图大小不同、节点无序,一张图中的每个节点都有不同数目的邻近节点,使得一些在图像中容易计算的重要运算(如卷积)不能再直接应用于图。此外,现有机器学习算法的核心假设是实例彼此独立。

然而,图数据中的每个实例都与周围的其它实例相关,含有一些复杂的连接信息,用于捕获数据之间的依赖关系,包括引用、朋友关系和相互作用。最近,越来越多的研究开始将深度学习方法应用到图数据领域。

受到深度学习领域进展的驱动,研究人员在设计图神经网络的架构时借鉴了卷积网络、循环网络和深度自编码器的思想。为了应对图数据的复杂性,重要运算的泛化和定义在过去几年中迅速发展。

人工智能,大数据与深度学习之间的关系和差异

说到人工智能(AI)的定义,映入脑海的关键词可能是“未来”,“科幻小说”,虽然这些因素看似离我们很遥远,但它却是我们日常生活的一部分。

语音助手的普及、无人驾驶的成功,人工智能、机器学习、深度学习已经深入我们生活的各个场景。

例如京东会根据你的浏览行为和用户的相似性,利用算法为你推荐你需要的产品;又比如美颜相机,会基于你面部特征的分析,通过算法精细你的美颜效果。

还有众所周知的谷歌DeepMind,当AlphaGo打败了韩国职业围棋高手LeeSe-dol时,媒体描述这场人机对战的时候,提到了人工智能AI、机器学习、深度学习等术语。

没错,这三项技术都为AlphaGo的胜利立下了汗马功劳,然而它们并不是一回事。

人工智能和机器学习的同时出现,机器学习和深度学习的交替使用......使大部分读者雾里看花,这些概念究竟有何区别,我们可以通过下面一个关系图来进行区分。

图一:人工智能、机器学习、深度学习的关系人工智能包括了机器学习和深度学习,机器学习包括了深度学习。人工智能是机器学习的父类,机器学习则是深度学习的父类。

人工智能(ArtificialIntelligence,AI)是计算机科学的一个分支,它企图了解智能的实质,并生产出一种新的与人类智能相似的方式作出反应的智能机器,它不是人的智能,但能像人那样思考、也可能超过人的智能。

人工智能实际应用:机器视觉,指纹识别,人脸识别,视网膜识别,虹膜识别,掌纹识别,专家系统,自动规划,智能搜索,定理证明,博弈,自动程序设计,智能控制,机器人学,语言和图像理解,遗传编程等。

人工智能目前也分为:强人工智能(BOTTOM-UPAI)和弱人工智能(TOP-DOWNAI)。机器学习(MachineLearning,ML)是人工智能的核心,属于人工智能的一个分支。

机器学习是指从数据中自动分析获得规律,并利用规律对未知数据进行预测的算法,所以机器学习的核心是数据、算法(模型)、算力(计算机运算能力)。

机器学习应用领域:数据挖掘、数据分类、计算机视觉、自然语言处理(NLP)、生物特征识别、搜索引擎、医学诊断、检测信用卡欺诈、证券市场分析、DNA序列测序、语音和手写识别、战略游戏和机器人运用等。

深度学习(DeepLearning,DL):是机器学习研究中的一个新的领域,其动机在于建立、模拟人脑进行分析学习的神经网络,它模仿人脑的机制来解释数据。

数据挖掘(DataMining,DM),顾名思义是指利用机器学习技术从海量数据中“挖掘”隐藏信息,主要应用于图像、声音、文本。在商业环境中,企业希望让存放在数据库中的数据能“说话”,支持决策。

所以数据挖掘更偏向于应用。图二:数据挖掘与机器学习的关系机器学习是数据挖掘的一种重要方法,但机器学习是另一门学科,并不从属于数据挖掘,二者相辅相成。

数据挖掘是机器学习和数据库的交叉,主要利用机器学习提供的技术来分析海量数据,利用数据库界提供的技术来管理海量数据。

不管是人工智能、机器学习、深度学习还是数据挖掘,目前都在解决共同目标时发挥了自己的优势,并为社会生产和人类生活提供便利,帮助我们探索过去、展示现状、预测未来。

人工智能,机器学习与深度学习,到底是什么关系

有人说,人工智能(AI)是未来,人工智能是科幻,人工智能也是我们日常生活中的一部分。这些评价可以说都是正确的,就看你指的是哪一种人工智能。

今年早些时候,GoogleDeepMind的AlphaGo打败了韩国的围棋大师李世乭九段。

在媒体描述DeepMind胜利的时候,将人工智能(AI)、机器学习(machinelearning)和深度学习(deeplearning)都用上了。

这三者在AlphaGo击败李世乭的过程中都起了作用,但它们说的并不是一回事。今天我们就用最简单的方法——同心圆,可视化地展现出它们三者的关系和应用。

向左转|向右转如上图,人工智能是最早出现的,也是最大、最外侧的同心圆;其次是机器学习,稍晚一点;最内侧,是深度学习,当今人工智能大爆炸的核心驱动。五十年代,人工智能曾一度被极为看好。

之后,人工智能的一些较小的子集发展了起来。先是机器学习,然后是深度学习。深度学习又是机器学习的子集。深度学习造成了前所未有的巨大的影响。

从概念的提出到走向繁荣1956年,几个计算机科学家相聚在达特茅斯会议(DartmouthConferences),提出了“人工智能”的概念。

其后,人工智能就一直萦绕于人们的脑海之中,并在科研实验室中慢慢孵化。之后的几十年,人工智能一直在两极反转,或被称作人类文明耀眼未来的预言;或者被当成技术疯子的狂想扔到垃圾堆里。

坦白说,直到2012年之前,这两种声音还在同时存在。过去几年,尤其是2015年以来,人工智能开始大爆发。很大一部分是由于GPU的广泛应用,使得并行计算变得更快、更便宜、更有效。

当然,无限拓展的存储能力和骤然爆发的数据洪流(大数据)的组合拳,也使得图像数据、文本数据、交易数据、映射数据全面海量爆发。

让我们慢慢梳理一下计算机科学家们是如何将人工智能从最早的一点点苗头,发展到能够支撑那些每天被数亿用户使用的应用的。

| 人工智能(ArtificialIntelligence)——为机器赋予人的智能向左转|向右转早在1956年夏天那次会议,人工智能的先驱们就梦想着用当时刚刚出现的计算机来构造复杂的、拥有与人类智慧同样本质特性的机器。

这就是我们现在所说的“强人工智能”(GeneralAI)。这个无所不能的机器,它有着我们所有的感知(甚至比人更多),我们所有的理性,可以像我们一样思考。

人们在电影里也总是看到这样的机器:友好的,像星球大战中的C-3PO;邪恶的,如终结者。强人工智能现在还只存在于电影和科幻小说中,原因不难理解,我们还没法实现它们,至少目前还不行。

我们目前能实现的,一般被称为“弱人工智能”(NarrowAI)。弱人工智能是能够与人一样,甚至比人更好地执行特定任务的技术。例如,Pinterest上的图像分类;或者Facebook的人脸识别。

这些是弱人工智能在实践中的例子。这些技术实现的是人类智能的一些具体的局部。但它们是如何实现的?这种智能是从何而来?这就带我们来到同心圆的里面一层,机器学习。

| 机器学习——一种实现人工智能的方法向左转|向右转机器学习最基本的做法,是使用算法来解析数据、从中学习,然后对真实世界中的事件做出决策和预测。

与传统的为解决特定任务、硬编码的软件程序不同,机器学习是用大量的数据来“训练”,通过各种算法从数据中学习如何完成任务。机器学习直接来源于早期的人工智能领域。

传统算法包括决策树学习、推导逻辑规划、聚类、强化学习和贝叶斯网络等等。众所周知,我们还没有实现强人工智能。早期机器学习方法甚至都无法实现弱人工智能。

机器学习最成功的应用领域是计算机视觉,虽然也还是需要大量的手工编码来完成工作。

人们需要手工编写分类器、边缘检测滤波器,以便让程序能识别物体从哪里开始,到哪里结束;写形状检测程序来判断检测对象是不是有八条边;写分类器来识别字母“ST-O-P”。

使用以上这些手工编写的分类器,人们总算可以开发算法来感知图像,判断图像是不是一个停止标志牌。这个结果还算不错,但并不是那种能让人为之一振的成功。

特别是遇到云雾天,标志牌变得不是那么清晰可见,又或者被树遮挡一部分,算法就难以成功了。这就是为什么前一段时间,计算机视觉的性能一直无法接近到人的能力。它太僵化,太容易受环境条件的干扰。

随着时间的推进,学习算法的发展改变了一切。

| 深度学习——一种实现机器学习的技术向左转|向右转人工神经网络(ArtificialNeuralNetworks)是早期机器学习中的一个重要的算法,历经数十年风风雨雨。

神经网络的原理是受我们大脑的生理结构——互相交叉相连的神经元启发。但与大脑中一个神经元可以连接一定距离内的任意神经元不同,人工神经网络具有离散的层、连接和数据传播的方向。

例如,我们可以把一幅图像切分成图像块,输入到神经网络的第一层。在第一层的每一个神经元都把数据传递到第二层。第二层的神经元也是完成类似的工作,把数据传递到第三层,以此类推,直到最后一层,然后生成结果。

每一个神经元都为它的输入分配权重,这个权重的正确与否与其执行的任务直接相关。最终的输出由这些权重加总来决定。我们仍以停止(Stop)标志牌为例。

将一个停止标志牌图像的所有元素都打碎,然后用神经元进行“检查”:八边形的外形、救火车般的红颜色、鲜明突出的字母、交通标志的典型尺寸和静止不动运动特性等等。

神经网络的任务就是给出结论,它到底是不是一个停止标志牌。神经网络会根据所有权重,给出一个经过深思熟虑的猜测——“概率向量”。

这个例子里,系统可能会给出这样的结果:86%可能是一个停止标志牌;7%的可能是一个限速标志牌;5%的可能是一个风筝挂在树上等等。然后网络结构告知神经网络,它的结论是否正确。

即使是这个例子,也算是比较超前了。直到前不久,神经网络也还是为人工智能圈所淡忘。其实在人工智能出现的早期,神经网络就已经存在了,但神经网络对于“智能”的贡献微乎其微。

主要问题是,即使是最基本的神经网络,也需要大量的运算。神经网络算法的运算需求难以得到满足。

不过,还是有一些虔诚的研究团队,以多伦多大学的GeoffreyHinton为代表,坚持研究,实现了以超算为目标的并行算法的运行与概念证明。但也直到GPU得到广泛应用,这些努力才见到成效。

我们回过头来看这个停止标志识别的例子。神经网络是调制、训练出来的,时不时还是很容易出错的。它最需要的,就是训练。

需要成百上千甚至几百万张图像来训练,直到神经元的输入的权值都被调制得十分精确,无论是否有雾,晴天还是雨天,每次都能得到正确的结果。

只有这个时候,我们才可以说神经网络成功地自学习到一个停止标志的样子;或者在Facebook的应用里,神经网络自学习了你妈妈的脸;又或者是2012年吴恩达(AndrewNg)教授在Google实现了神经网络学习到猫的样子等等。

吴教授的突破在于,把这些神经网络从基础上显著地增大了。层数非常多,神经元也非常多,然后给系统输入海量的数据,来训练网络。在吴教授这里,数据是一千万YouTube视频中的图像。

吴教授为深度学习(deeplearning)加入了“深度”(deep)。这里的“深度”就是说神经网络中众多的层。

现在,经过深度学习训练的图像识别,在一些场景中甚至可以比人做得更好:从识别猫,到辨别血液中癌症的早期成分,到识别核磁共振成像中的肿瘤。

Google的AlphaGo先是学会了如何下围棋,然后与它自己下棋训练。它训练自己神经网络的方法,就是不断地与自己下棋,反复地下,永不停歇。

| 深度学习,给人工智能以璀璨的未来深度学习使得机器学习能够实现众多的应用,并拓展了人工智能的领域范围。深度学习摧枯拉朽般地实现了各种任务,使得似乎所有的机器辅助功能都变为可能。

无人驾驶汽车,预防性医疗保健,甚至是更好的电影推荐,都近在眼前,或者即将实现。人工智能就在现在,就在明天。有了深度学习,人工智能甚至可以达到我们畅想的科幻小说一般。

你的C-3PO我拿走了,你有你的终结者就好了。

什么是机器学习?和深度学习是什么关系?

机器学习(MachineLearning,ML)是人工智能的子领域,也是人工智能的核心。它囊括了几乎所有对世界影响最大的方法(包括深度学习)。

机器学习理论主要是设计和分析一些让计算机可以自动学习的算法。深度学习(DeepLearning,DL)属于机器学习的子类。

它的灵感来源于人类大脑的工作方式,是利用深度神经网络来解决特征表达的一种学习过程。深度神经网络本身并非是一个全新的概念,可理解为包含多个隐含层的神经网络结构。

为了提高深层神经网络的训练效果,人们对神经元的连接方法以及激活函数等方面做出了调整。其目的在于建立、模拟人脑进行分析学习的神经网络,模仿人脑的机制来解释数据,如文本、图像、声音。

1、应用场景机器学习在指纹识别、特征物体检测等领域的应用基本达到了商业化的要求。深度学习主要应用于文字识别、人脸技术、语义分析、智能监控等领域。目前在智能硬件、教育、医疗等行业也在快速布局。

2、所需数据量机器学习能够适应各种数据量,特别是数据量较小的场景。如果数据量迅速增加,那么深度学习的效果将更加突出,这是因为深度学习算法需要大量数据才能完美理解。

3、执行时间执行时间是指训练算法所需要的时间量。一般来说,深度学习算法需要大量时间进行训练。这是因为该算法包含有很多参数,因此训练它们需要比平时更长的时间。相对而言,机器学习算法的执行时间更少。

4、解决问题的方法机器学习算法遵循标准程序以解决问题。它将问题拆分成数个部分,对其进行分别解决,而后再将结果结合起来以获得所需的答案。深度学习则以集中方式解决问题,而不必进行问题拆分。

超大规模图神经网络系统真的可以实现赋予机器常识吗?

机器学习是人工智能的一个分支。人工智能的研究历史有着一条从以“推理”为重点,到以“知识”为重点,再到以“学习”为重点的自然、清晰的脉络。

机器学习是实现人工智能的一个途径,即以机器学习为手段解决人工智能中的问题。从学习方式来讲,机器学习包括监督式学习、非监督式学习、半监督式学习和强化学习。

以算法来分类,则有回归算法、基于实例的算法、正则化方法、决策树学习、贝叶斯方法、基于核的算法、聚类算法、关联规则学习、遗传算法、人工神经网络、深度学习、降低维度算法和集成算法。

因此,深度学习又是机器学习的分支。深度学习是一种以人工神经网络为架构,对数据进行表征学习的算法。

如今,单纯的深度学习已经成熟,结合了深度学习的图神经网络将端到端学习与归纳推理相结合,有望解决深度学习无法处理的关系推理、可解释性等一系列问题。

强大的图神经网络将会类似于由神经元等节点所形成网络的人的大脑,机器有望成为具备常识,具有理解、认知能力的AI。

机器阅读和理解人类语言比尔·盖茨曾经发表过对人工智能的一些看法,他认为人工智能会有惊人的影响,并且大多都是好的。比如帮助学生,帮助查看分析图像,帮助我们了解发生了什么。

同时他也提出,人工智能还有一件事还不能实现,而一旦实现,将帮助人们解决更多的难题,这一点就是:阅读。

“所有相关的公司都在努力实现这一点,比如有一本生物学的书,人工智能会不会阅读它,然后通过考试或者操作一项实验。

这是最后一个难题,目前视力问题解决了,语言能力也不错,甚至翻译也很好,现在我们都在攻克阅读问题。一旦有了阅读能力,就可以帮助科学发明,这将会非常了不起,可以更好地帮助人们解决问题。

人工智能势头很猛,发展比我们预期的更快,像那场围棋比赛的结果,就是一个惊人的里程碑。”是的,让机器正确理解人类知识和语言的技术比起图片和声音识别技术来说更加困难。

一是因为人类语言的“余地”,语言作为一种表达方式,是非常偏向于模糊和不确定的。

二是因为人类语言会因环境变化而变化,对它的理解多数是通过当时情境的作用,而这一点又让语言理解的复杂程度加倍,机器是难以标记和模拟相关环境的。

尽管互联网上已经包含了足够多的语言文字信息,我们还是无法以机器能够理解的形式将这些信息真正传递给它们。

因此,比尔·盖茨认为让机器学会阅读和理解人类语言是一个里程碑式事件,而微软、谷歌、Facebook和IBM等公司也在发力机器学习阅读理解能力。

从某种意义上来讲,我的理解是,机器阅读人类语言应该也是从弱人工智能到强人工智能跨越的标志之一。机器理解和创造自己随着越来越多的这类技术变得成熟,机器将会在各种各样的任务上超越人类。

那么,机器是否可以理解自己呢?甚至机器是否可以设计和编码自己本身呢?可以想象一下,一旦机器做到这一步,那将会带来什么样的颠覆。

GoogleBrain团队在探索这个领域,他们称之为“自动机器学习”方向。顶尖的人工智能专家们发现,设计机器学习系统本身这样一个他们最困难的工作之一,也有可能通过AI系统自动完成。

甚至在一些场景下,AI系统自己开发的AI系统已经赶上甚至超过了人类专家。

国外著名科技记者StevenLevy在他刊于BackChannel的文章《谷歌如何将自己重塑为一家“机器学习为先”的公司》中提到,谷歌大脑负责人JeffDean表示,如果现在让他改写谷歌的基础设施,大部分代码都不会由人编码,而将由机器学习自动生成。

学术界也有相关研究,伯克利的KeLi和JitendraMalik在他们日前提交的论文《LearningtoOptimize》中提出了让算法自我优化的方法。

他们在论文摘要中写道,“算法设计是一个费力的过程,通常需要许多迭代的思想和验证。在本文中,我们探讨自动化算法设计,并提出了一种方法学习自动优化算法”。

从强化学习的角度入手,KeLi和JitendraMalik使用指导性策略搜索来让AI学习优化算法,并且证明了他们所设计的算法在收敛速度和/或最终目标值方面优于现有的手工编程开发的算法。

 

最后

以上就是傲娇曲奇为你收集整理的【无标题】的全部内容,希望文章能够帮你解决【无标题】所遇到的程序开发问题。

如果觉得靠谱客网站的内容还不错,欢迎将靠谱客网站推荐给程序员好友。

本图文内容来源于网友提供,作为学习参考使用,或来自网络收集整理,版权属于原作者所有。
点赞(50)

评论列表共有 0 条评论

立即
投稿
返回
顶部