我是靠谱客的博主 笑点低烧鹅,最近开发中收集的这篇文章主要介绍大话卷积神经网络(CNN),觉得挺不错的,现在分享给大家,希望可以做个参考。

概述

 

 

这几年深度学习快速发展,在图像识别、语音识别、物体识别等各种场景上取得了巨大的成功,例如AlphaGo击败世界围棋冠军,iPhone X内置了人脸识别解锁功能等等,很多AI产品在世界上引起了很大的轰动。在这场深度学习革命中,卷积神经网络(Convolutional Neural Networks,简称CNN)是推动这一切爆发的主力,在目前人工智能的发展中有着非常重要的地位。

【问题来了】那什么是卷积神经网络(CNN)呢?

1、小白一下,什么是神经网络?
这里的神经网络,也指人工神经网络(Artificial Neural Networks,简称ANNs),是一种模仿生物神经网络行为特征的算法数学模型,由神经元、节点与节点之间的连接(突触)所构成,如下图:
 
每个神经网络单元抽象出来的数学模型如下,也叫感知器,它接收多个输入(x1,x2,x3...),产生一个输出,这就好比是神经末梢感受各种外部环境的变化(外部刺激),然后产生电信号,以便于转导到神经细胞(又叫神经元)。
 
单个的感知器就构成了一个简单的模型,但在现实世界中,实际的决策模型则要复杂得多,往往是由多个感知器组成的多层网络,如下图所示,这也是经典的神经网络模型,由输入层、隐含层、输出层构成。
 
人工神经网络可以映射任意复杂的非线性关系,具有很强的鲁棒性、记忆能力、自学习等能力,在分类、预测、模式识别等方面有着广泛的应用。

2、重点来了,什么是卷积神经网络?
卷积神经网络在图像识别中大放异彩,达到了前所未有的准确度,有着广泛的应用。接下来将以图像识别为例子,来介绍卷积神经网络的原理。
(1)案例
假设给定一张图(可能是字母X或者字母O),通过CNN即可识别出是X还是O,如下图所示,那怎么做到的呢
 
(2)图像输入
如果采用经典的神经网络模型,则需要读取整幅图像作为神经网络模型的输入(即全连接的方式),当图像的尺寸越大时,其连接的参数将变得很多,从而导致计算量非常大。
而我们人类对外界的认知一般是从局部到全局,先对局部有感知的认识,再逐步对全体有认知,这是人类的认识模式。在图像中的空间联系也是类似,局部范围内的像素之间联系较为紧密,而距离较远的像素则相关性较弱。因而,每个神经元其实没有必要对全局图像进行感知,只需要对局部进行感知,然后在更高层将局部的信息综合起来就得到了全局的信息。这种模式就是卷积神经网络中降低参数数目的重要神器:局部感受野
 
(3)提取特征
如果字母X、字母O是固定不变的,那么最简单的方式就是图像之间的像素一一比对就行,但在现实生活中,字体都有着各个形态上的变化(例如手写文字识别),例如平移、缩放、旋转、微变形等等,如下图所示:
 
我们的目标是对于各种形态变化的X和O,都能通过CNN准确地识别出来,这就涉及到应该如何有效地提取特征,作为识别的关键因子。
回想前面讲到的“局部感受野”模式,对于CNN来说,它是一小块一小块地来进行比对,在两幅图像中大致相同的位置找到一些粗糙的特征(小块图像)进行匹配,相比起传统的整幅图逐一比对的方式,CNN的这种小块匹配方式能够更好的比较两幅图像之间的相似性。如下图:<

最后

以上就是笑点低烧鹅为你收集整理的大话卷积神经网络(CNN)的全部内容,希望文章能够帮你解决大话卷积神经网络(CNN)所遇到的程序开发问题。

如果觉得靠谱客网站的内容还不错,欢迎将靠谱客网站推荐给程序员好友。

本图文内容来源于网友提供,作为学习参考使用,或来自网络收集整理,版权属于原作者所有。
点赞(25)

评论列表共有 0 条评论

立即
投稿
返回
顶部