概述
# http://wiki.jikexueyuan.com/project/tensorflow-zh/tutorials/mnist_pros.html #InteractiveSession -- 能让你在运行图的时候,插入一些计算图, CNN--卷积神经网络 import tensorflow.examples.tutorials.mnist.input_data as input_data mnist = input_data.read_data_sets("MNIST_data/",one_hot=True) import tensorflow as tf sess = tf.InteractiveSession() x = tf.placeholder(tf.float32,[None,784]) y_ = tf.placeholder("float",[None,10]) def weight_variable(shape): #truncated_normal:截断正态分布,函数产生的随机数与均值的差不会超过两倍的标准差,stddev是标准差 initial = tf.truncated_normal(shape, stddev=0.1) return tf.Variable(initial) def bias_variable(shape): initial = tf.constant(0.1, shape=shape) return tf.Variable(initial) # 卷积和池化 def conv2d(x, W): return tf.nn.conv2d(x,W,strides=[1,1,1,1] , padding='SAME') #strides--窗口在每一个维度上滑动的步长 ,value--[batch, height, width, channels]--[一个batch的图片数量, 图片高度, 图片宽度, 图像通道数] #filter--[filter_height, filter_width, in_channels, out_channels]--[卷积核的高度,卷积核的宽度,图像通道数,卷积核个数] def max_pool_2x2(x): return tf.nn.max_pool(x,ksize=[1,2,2,1], #ksize--池化窗口的大小 strides=[1,2,2,1], padding='SAME') #convolution1 layer W_conv1 = weight_variable([5,5,1,32]) #patch大小,输入通道数,输出通道数 b_conv1 = bias_variable([32]) x_image = tf.reshape(x,[-1,28,28,1]) #第2、第3维对应图片的宽、高,第4维维代表图片的颜色通道数,rgb彩色为3 h_conv1 = tf.nn.relu(conv2d(x_image,W_conv1)+b_conv1) #28*28*32 h_pool1 = max_pool_2x2(h_conv1) #14*14*32 #convolution2 layer W_conv2 = weight_variable([5,5,32,64]) b_conv2 = bias_variable([64]) h_conv2 = tf.nn.relu(conv2d(h_pool1,W_conv2)+b_conv2) #14*14*64 h_pool2 = max_pool_2x2(h_conv2) #7*7*64 #function1 layer 密集连接层 W_fc1 = weight_variable([7 * 7 * 64, 1024]) b_fc1 = bias_variable([1024]) h_pool2_flat = tf.reshape(h_pool2, [-1, 7*7*64]) h_fc1 = tf.nn.relu(tf.matmul(h_pool2_flat, W_fc1)+b_fc1) #[-1, 1024] #dropout:防止过拟合 keep_prob = tf.placeholder("float") #按照一定的概率将其暂时从网络中丢弃,保持每个元素的概率 h_fc1_drop = tf.nn.dropout(h_fc1, keep_prob) #[-1, 1024] #output 输出层 W_fc2 = weight_variable([1024,10]) b_fc2 = bias_variable([10]) y_conv = tf.nn.softmax(tf.matmul(h_fc1_drop, W_fc2)+b_fc2) #[-1,10] #模型评估 cross_entropy = -tf.reduce_sum(y_ * tf.log(y_conv)) optimization = tf.train.AdamOptimizer(1e-4) train_step = optimization.minimize(cross_entropy) correct_prediction = tf.equal(tf.argmax(y_conv,1),tf.argmax(y_,1)) accuracy = tf.reduce_mean(tf.cast(correct_prediction,"float")) #初始化变量 init = tf.global_variables_initializer() sess.run(init) for i in range(2000): batch = mnist.train.next_batch(100) train_step.run(feed_dict={x:batch[0], y_:batch[1], keep_prob:0.5}) # sess.run(train_step,feed_dict={x:batch[0], y_:batch[1], keep_prob:0.5}) #替换也可以 if i % 100 == 0: #eval:evaluate train_accuracy = accuracy.eval(feed_dict={ x:batch[0],y_:batch[1],keep_prob:1.0}) # train_accuracy = sess.run(accuracy,feed_dict={ #替换也可以 # x:batch[0],y_:batch[1],keep_prob:1.0}) print("step %d,train_acc %g" %(i , train_accuracy)) #根据数值的大小,自动选f格式或e格式 print("test_acc %g" %accuracy.eval(feed_dict={ x: mnist.test.images, y_:mnist.test.labels, keep_prob: 1.0}))
最后
以上就是怕孤单煎蛋为你收集整理的Mnist2-CNN的全部内容,希望文章能够帮你解决Mnist2-CNN所遇到的程序开发问题。
如果觉得靠谱客网站的内容还不错,欢迎将靠谱客网站推荐给程序员好友。
本图文内容来源于网友提供,作为学习参考使用,或来自网络收集整理,版权属于原作者所有。
发表评论 取消回复