概述
【人工神经网络】学习笔记
BP算法讲解:前向映射+误差反向传播
关键点:链式求导法则反复用
本文以一个实例理解误差反向传播过程。
转自https://blog.csdn.net/zhaomengszu/article/details/77834845感谢作者
这是典型的三层神经网络的基本构成,Layer L1是输入层,Layer L2是隐含层,Layer L3是隐含层,我们现在手里有一堆数据{x1,x2,x3,…,xn},输出也是一堆数据{y1,y2,y3,…,yn},现在要他们在隐含层做某种变换,让你把数据灌进去后得到你期望的输出。如果你希望你的输出和原始输入一样,那么就是最常见的自编码模型(Auto-Encoder)。可能有人会问,为什么要输入输出都一样呢?有什么用啊?其实应用挺广的,在图像识别,文本分类等等都会用到,我会专门再写一篇Auto-Encoder的文章来说明,包括一些变种之类的。如果你的输出和原始输入不一样,那么就是很常见的人工神经网络了,相当于让原始数据通过一个映射来得到我们想要的输出数据,也就是我们今天要讲的话题。
第一层是输入层,包含两个神经元i1,i2,和截距项b1;第二层是隐含层,包含两个神经元h1,h2和截距项b2,第三层是输出o1,o2,每条线上标的wi是层与层之间连接的权重,激活函数我们默认为sigmoid函数。
现在对他们赋上初值,如下图:
其中,输入数据 i1=0.05,i2=0.10;
输出数据 o1=0.01,o2=0.99;
初始权重 w1=0.15,w2=0.20,w3=0.25,w4=0.30;
w5=0.40,w6=0.45,w7=0.50,w8=0.55
目标:给出输入数据i1,i2(0.05和0.10),使输出尽可能与原始输出o1,o2(0.01和0.99)接近。
Step 1 前向传播
1.输入层—->隐含层:
计算神经元h1的输入加权和:
神经元h1的输出o1:(此处用到激活函数为sigmoid函数):
同理,可计算出神经元h2的输出o2:
2.隐含层—->输出层:
计算输出层神经元o1和o2的值:
这样前向传播的过程就结束了,我们得到输出值为[0.75136079 , 0.772928465],与实际值[0.01 , 0.99]相差还很远,现在我们对误差进行反向传播,更新权值,重新计算输出。
Step 2 反向传播
1.计算总误差
总误差:(square error)
但是有两个输出,所以分别计算o1和o2的误差,总误差为两者之和:
2.隐含层—->输出层的权值更新:
以权重参数w5为例,如果我们想知道w5对整体误差产生了多少影响,可以用整体误差对w5求偏导求出:(链式法则)
下面的图可以更直观的看清楚误差是怎样反向传播的:
现在我们来分别计算每个式子的值:
计算:
计算:
采用S型函数的好处:其导数是其本身的函数,避免计算机求导计算。
(这一步实际上就是对sigmoid函数求导,比较简单,可以自己推导一下)
计算:
最后三者相乘:
这样我们就计算出整体误差E(total)对w5的偏导值。
回过头来再看看上面的公式,我们发现:
为了表达方便,用来表示输出层的误差:
因此,整体误差E(total)对w5的偏导公式可以写成:
如果输出层误差计为负的话,也可以写成:
最后我们来更新w5的值:
(其中,是学习速率,这里我们取0.5)
同理,可更新w6,w7,w8:
3.隐含层—->隐含层的权值更新:
方法其实与上面说的差不多,但是有个地方需要变一下,在上文计算总误差对w5的偏导时,是从out(o1)—->net(o1)—->w5,但是在隐含层之间的权值更新时,是out(h1)—->net(h1)—->w1,而out(h1)会接受E(o1)和E(o2)两个地方传来的误差,所以这个地方两个都要计算。
计算:
先计算:
同理,计算出:
两者相加得到总值:
再计算:
再计算:
最后,三者相乘:
为了简化公式,用sigma(h1)表示隐含层单元h1的误差:
最后,更新w1的权值:
同理,额可更新w2,w3,w4的权值:
这样误差反向传播法就完成了,最后我们再把更新的权值重新计算,不停地迭代,在这个例子中第一次迭代之后,总误差E(total)由0.298371109下降至0.291027924。迭代10000次后,总误差为0.000035085,输出为[0.015912196,0.984065734](原输入为[0.01,0.99]),证明效果还是不错的。
补充:
权值更新的过程中更新规则是:
1.当误差对权值的偏导数大于0时,权值调整量为负,实际输出大于期望输出,权值向减少的方向调整,使得实际输出与期望输出的差减小。
2.当误差对权值的偏导数小于0时,权值调整量为正,实际输出小于期望输出,权值向增大的方向调整,使得实际输出与期望输出的差减小。
总结:
- BP神经网络实现了输入到输出的非线性映射,给了新的非样本数据依然可以做出正确的映射,具有一定的泛化能力和容错能力。
- 有监督的学习算法,学习算法采用的梯度下降算法,权值越多,局部极小点越多。
- 全局逼近
- 权值调整的快慢与梯度搜索算法的步长有关,收敛速度与权值的初始值有关。
- 网络的结构设计(隐层的层数、隐层节点的个数等)无理论指导。
- 激活函数采用S型函数时,存在平坦区域即误差下降缓慢的区域,影响收敛速度。因此有大范围样本的时候,常常对输入样本进行归一化,使得数据分布在梯度下降较大的区域,加快其收敛速度。最终的输出也做相应处理。
目前改进的BP网络的学习算法有:消除样本输入顺序影响的改进算法、附加动量的改进算法、采用自适应调整参数的改进算法、使用弹性方法的改进算法等。
最后
以上就是威武音响为你收集整理的【人工神经网络学习笔记】理解BP算法——简单实例【人工神经网络】学习笔记BP算法讲解:前向映射+误差反向传播的全部内容,希望文章能够帮你解决【人工神经网络学习笔记】理解BP算法——简单实例【人工神经网络】学习笔记BP算法讲解:前向映射+误差反向传播所遇到的程序开发问题。
如果觉得靠谱客网站的内容还不错,欢迎将靠谱客网站推荐给程序员好友。
发表评论 取消回复