我是靠谱客的博主 微笑学姐,最近开发中收集的这篇文章主要介绍范围树(C++实现,两种建树方法,截窗查询)范围树它长什么样子怎么建树截窗查询完整的代码,觉得挺不错的,现在分享给大家,希望可以做个参考。

概述

范围树它长什么样子

文字描述

              网上和书上说的都比较抽象,根据我自己的理解,其实它就类似于一个多维的线段树,它的每一个维度是一个线段树,并且带有一个指向下一维度线段树的指针。这样子,如果是二维的范围树(第一个维度带有k个节点),它就是一个带有k个结点的线段树和k棵另一维度树的线段树的集合,其中第一维度的线段树,每个结点都带有指向以本结点为范围的下一维度线段树的指针。

例图

这里以取中点的线段树为例

怎么建树

思路1

         这个问题只看为伪代码是没有任何卵用的。比如要建一个二维的范围树,第一个维度其实只需要建一个普通的线段树,维度指针指向下一个维度的线段树即可,难点在于第二个维度的线段树要怎么建。在这个过程中,xy方向,对于x方向我们可以对点集按x从小到大进行排序,然后建树,但是,对于y方向,我们却不能直接对点集按y从小到大进行排序,原因在于x小的点,它的y不一定小,如果直接对所有点按y从小到大排序,那么点的x方向的分布就会出问题,所以应该把x限制在一个范围内的时候,再对y方向进行排序,也就是说,如果用递归的方式来构建范围树,它的第二维y需要每次都对区间在x方向上进行递归,每次x方向的界限定在l和r之间,然后,对x介于l和r之间的点进行一次y从小到大的排序,然后用这些点来构建x介于l和r之间的一个点的维度指针所指向的第二维的线段树即可。

例如2,8    1,5      3,3      4,4     5,7       6,2      7,1     8,6,如果直接对y方向从小到大排序,得到的是7,1  6,2   3,3  4,4   1,5    8,6    5,7    2,8,这样子叶子2,8对应y维度的树就成了7,1了,其实叶子结点,两个维度肯定是完全相同的。

代码1

对于x方向,我们直接进行构建线段树,对于y方向,先用一个辅助函数定界并对点按x从小到大排序,再构建线段树,maxN是为了确定辅助函数的递归出口

//构建范围树 
void RangeTree::BuildTree(RangeTree* rangeTreeX,RangeTree** rangeTreeY,Point* xSortList,Point* ySortList,int l,int r,int index,int indexY,Direction dir)
{
	maxN = max(maxN,index);
	//maxIndex = max(index,maxIndex);
	int m = (l + r)/2;
	switch(dir)
	{
		case X:
			//递归到了叶结点 
			if(l == r)
			{
			    rangeTreeX[index].eleXDir = xSortList[m];
			    rangeTreeX[index].dir = dir;
			    rangeTreeX[index].nextDimension = rangeTreeY[index];
			    rangeTreeX[index].l = l;
			    rangeTreeX[index].r = r;
			    return;
			}
			//递归构建左子树 
			rangeTreeX[index].BuildTree(rangeTreeX,rangeTreeY,xSortList,ySortList,l,m,2*index,indexY,X);
            //递归构建右子树 
			rangeTreeX[index].BuildTree(rangeTreeX,rangeTreeY,xSortList,ySortList,m+1,r,2*index+1,indexY,X);
			//为了截窗查询,这里取中点 
			Point point;
			point.x = (rangeTreeX[2*index].eleXDir.x + rangeTreeX[2*index+1].eleXDir.x)/2;
			point.y = (rangeTreeX[2*index].eleXDir.y + rangeTreeX[2*index+1].eleXDir.y)/2; 
			//父结点设置为两个子结点的中点 
			rangeTreeX[index].eleXDir = point;
			//x方向的维度指针指向y方向的树 
			rangeTreeX[index].nextDimension = rangeTreeY[index]; 
			rangeTreeX[index].l = l;
			rangeTreeX[index].r = r;
			break;
		case Y:
			
			if(l == r)
			{
				//找到了叶结点,注意这里的l和r指的是x方向的l和r,为了方便用索引建树与x方向一一对应 
			    rangeTreeY[index][indexY].eleYDir = ySortList[m];
			    rangeTreeY[index][indexY].dir = dir;
			    rangeTreeY[index][indexY].nextDimension = NULL;
			    rangeTreeY[index][indexY].l = l;
			    rangeTreeY[index][indexY].r = r;
			    return;
		    }
		    
		    //递归构建左子树	
			rangeTreeY[index][indexY].BuildTree(rangeTreeX,rangeTreeY,xSortList,ySortList,l,m,index,2*indexY,Y);
			//递归构建右子树	
		    rangeTreeY[index][indexY].BuildTree(rangeTreeX,rangeTreeY,xSortList,ySortList,m+1,r,index,2*indexY + 1,Y);
		    
		    //为了截窗查询,这里取中点 
			point.y = (rangeTreeY[index][2*indexY].eleYDir.y + rangeTreeY[index][2*indexY+1].eleYDir.y)/2;
			point.x = (rangeTreeY[index][2*indexY].eleYDir.x + rangeTreeY[index][2*indexY+1].eleYDir.x)/2;
		    rangeTreeY[index][indexY].eleYDir = point;
		    
		    rangeTreeY[index][indexY].dir = dir;
		    //因为是二维的,y方向的维度指针没有指向任何树 
			rangeTreeY[index][indexY].nextDimension = NULL;
		    rangeTreeY[index][indexY].l = l;
			rangeTreeY[index][indexY].r = r;
			break;
	}
}

辅助函数

void RangeTree::HelpBuildYTree(int rBound,int i,RangeTree** rangeTreeY,Point* xSortList,int l,int r)
{
	if(i > rBound)
	    return;
	//获取l到r之间的point 
	Point* list = new Point[r+1];
	for(int j = l; j <= r; ++j)
	{
	    list[j] = xSortList[j];
	}
	//对l到r之间的point排序 
	sort(list + l,list + r + 1,YSortFunc);
	//对y方向建树 
	rangeTreeY[i][1].BuildTree(NULL,rangeTreeY,list,list,l,r,i,1,Y);

	int m = (l + r)/2;
	//帮助构建左子树和右子树 
	if(m >= l)
	    HelpBuildYTree(rBound,i*2,rangeTreeY,xSortList,l,m);
	if(m+1 <= r)
	    HelpBuildYTree(rBound,i*2+1,rangeTreeY,xSortList,m+1,r);
}

思路2

但是这样子建这棵树的y维度,其实每一次都需要进行排序,效率比较低,感觉不太好,但是思路1中出问题的地方是直接对y排序后,会和x的界限对不上,于是一种神奇的想法产生了,如果每一次排序,先排单个叶结点,然后保证叶结点上一层两两有序,然后再上一层四四有序,。。。,这样下去,其实在这个过程中构建y维度的树就不会有什么问题了,也不用每次都进行排序,也就是利用归并排序,在每次合并的过程中进行排序顺便构建对应x范围的子树。

代码2

void RangeTree::DivideAndBuildYTree(RangeTree** rangeTreeY,Point* xSortList,int l,int r,int index)
{
	if(l < r)
	{
	    int m = (l + r)/2;
	    DivideAndBuildYTree(rangeTreeY,xSortList,l,m,2*index);
	    DivideAndBuildYTree(rangeTreeY,xSortList,m + 1,r,2*index + 1);
	    MergeAndBuildYTree(rangeTreeY,xSortList,l,r,index);
    }
	
}

void RangeTree::MergeAndBuildYTree(RangeTree** rangeTreeY,Point* xSortList,int l,int r,int index)
{
	int m = (l + r)/2;
	Point* list = new Point[r - l + 1];
	int pl = l,pr = m + 1;
	int p = 0;
	while(pl <= m && pr <=r)
	{
		list[p++] = xSortList[pl].y < xSortList[pr].y? xSortList[pl++]:xSortList[pr++];
	}
	while(pl <= m)
	{
	    list[p++] = xSortList[pl++];
	}
	while(pr <= r)
	{

	    list[p++] = xSortList[pr++];
	}
	
	if(r - l == 1)
	{
		//分到倒数第二层,需要把单个的结点建树 
		BuildTree(NULL,rangeTreeY,xSortList,xSortList,l,l,2*index,1,Y);
		BuildTree(NULL,rangeTreeY,xSortList,xSortList,r,r,2*index + 1,1,Y);
	}
	
	for(int i = 0; i < p; ++i)
	{
		xSortList[i + l] = list[i]; 
	}
	//建非单个结点的树
	BuildTree(NULL,rangeTreeY,xSortList,xSortList,l,r,index,1,Y);
}

截窗查询

其实就是输入一个矩形框,输出位于这个框内所有点的集合。

思路

利用刚刚建好的树,先从x方向二分找到所有x全部位于矩形框内的区间(l,r),然后对于(l,r)区间,去y方向二分找到所有y坐标位于框内的点即可。

代码

void RangeTree::BoxSearch(RangeTree* rangeTreeX,RangeTree** rangeTreeY,int l,int r,Box box,vector<Point>& points,Direction dir,int index,int indexY)
{
	int m = (l + r)/2;
	switch(dir)
	{
		case X:
			//树中的x完全在要被查找的框内 
		    if(l > box.xMin && l < box.xMax && r > box.xMin && r < box.xMax)
		    {
		    	BoxSearch(rangeTreeX,rangeTreeY,l,r,box,points,Y,index,1);
		    	return ;
			}
			
			//到了叶结点,并且叶结点不在框内
			if(l == r)
			{
				return;
			} 
			
			//树中的x左半边有可能有包含在框内的点 
			if(m >= box.xMax)
			{
				BoxSearch(rangeTreeX,rangeTreeY,l,m,box,points,X,2*index,1);
			}
			//树中的x右半边可能有包含在框内的点 
			if(m + 1 <= box.xMin)
			{
				BoxSearch(rangeTreeX,rangeTreeY,m + 1,r,box,points,X,2*index+1,1);
			}
			//两半边都可能存在符合条件的点 
			if(m >= box.xMin && m + 1 <= box.xMax)
			{
				BoxSearch(rangeTreeX,rangeTreeY,l,m,box,points,X,2*index,1);
				BoxSearch(rangeTreeX,rangeTreeY,m + 1,r,box,points,X,2*index+1,1);
			}
			break;
			
		case Y:
			//走到了这里相当于是X方向是完全在框内的,只需要考虑y方向是不是在框内即可

			//到了叶结点 
			if(l == r)
			{
				//找到了一个符合条件的点 
				if(rangeTreeY[index][indexY].eleYDir.y > box.yMin && rangeTreeY[index][indexY].eleYDir.y < box.yMax)
				{
					points.push_back(rangeTreeY[index][indexY].eleYDir);
				}
				return;
			}
			
			if(rangeTreeY[index][indexY].eleYDir.y >= box.yMax)
			{
				//递归查找左子树 
				BoxSearch(rangeTreeX,rangeTreeY,l,m,box,points,dir,index,2*indexY);
			}
			
			if(rangeTreeY[index][indexY].eleYDir.y <= box.yMin)
			{
				//递归查找右子树 
				BoxSearch(rangeTreeX,rangeTreeY,m + 1,r,box,points,dir,index,2*indexY + 1);
			}
			//左右子树都可能出现符合条件的点 
			if(rangeTreeY[index][indexY].eleYDir.y >= box.yMin && rangeTreeY[index][indexY].eleYDir.y <= box.yMax)
			{
				BoxSearch(rangeTreeX,rangeTreeY,l,m,box,points,dir,index,2*indexY);
				BoxSearch(rangeTreeX,rangeTreeY,m + 1,r,box,points,dir,index,2*indexY + 1);
			}
			
			break;
	}
}

完整的代码

#include<bits/stdc++.h>
using namespace std;
enum Direction
{
	X,
	Y
};

class Box
{
   public:
       int xMin;
       int yMin;
       int xMax;
       int yMax;
       Box();
	   Box(int xMin,int yMin,int xMax,int yMax);
};

class Point
{
	public:
        int x;
	    int y;
	    friend bool XSortFunc(Point a,Point b);
		friend bool YSortFunc(Point a,Point b);
		Point operator+(const Point& other);
		friend ostream& operator<<(ostream& out,Point point);
};

bool XSortFunc(Point a,Point b);
bool YSortFunc(Point a,Point b);

class RangeTree
{
	public:
        RangeTree* nextDimension;
        Point eleXDir;
        Point eleYDir;
        Direction dir;
        int l;
        int r;
        int depth;
        void BuildTree(RangeTree* rangeTreeX,RangeTree** rangeTreeY,Point* xSortList,Point* ySortList,int l,int r,int index,int indexY,Direction dir);
		void HelpBuildYTree(int rBound,int i,RangeTree** rangeTreeY,Point* xSortList,int l,int r);
		void Bfs(RangeTree* root,int l,int r,Direction dir);
		void DivideAndBuildYTree(RangeTree** rangeTreeY,Point* xSortList,int l,int r,int index);
		void MergeAndBuildYTree(RangeTree** rangeTreeY,Point* xSortList,int l,int r,int index);
		void BoxSearch(RangeTree* rangeTreeX,RangeTree** rangeTreeY,int l,int r,Box box,vector<Point>& points,Direction dir,int index,int indexY);
		RangeTree(RangeTree* nextDimension,Point eleXDir,Point eleYDir,Direction dir);
        RangeTree();
};


int maxN = 0;
int main()
{
	int l,r,lY,rY;
	cin>>l>>r>>lY>>rY;
	Point* pointList = new Point[r+1];
	for(int i = l; i <= r; ++i)
	{
		Point point;
		cin>>point.x>>point.y;
		pointList[i] = point;
	}
	sort(pointList+l,pointList+r+1,XSortFunc);
	RangeTree* rangeTreeX = new RangeTree[4*r];
	//第二个维度应该需要开一个二维数组,因为第一个维度每个元素需要指向一棵第二维度的树,
	//如果整体用一棵树,排序后就会有问题,比如(1,4),(2,8),(3,12),(4,1),对于只是两个点的父节点结果应该是
	//(1,4),(2,8),但是如果对是这四个结点的父节点来说,结果就成了(4,1) (1,4) (2,8) (3,12)
	//所以必须每个结点指向单独的树 
	RangeTree** rangeTreeY = new RangeTree*[4*r];

	for(int i = 1; i <= 4*r; ++i)
	{
		rangeTreeY[i] = new RangeTree[4*r];
	}
	
	rangeTreeX[1].BuildTree(rangeTreeX,rangeTreeY,pointList,pointList,l,r,1,1,X);
	
	int powCnt = 0;
	
	//rangeTreeY[1][1].HelpBuildYTree(maxN,1,rangeTreeY,pointList,l,r);
	rangeTreeY[1][1].DivideAndBuildYTree(rangeTreeY,pointList,l,r,1);
	
	
	
	for(int i = 1; i <= 15; ++i)
	{
	
    	rangeTreeY[2][1].Bfs(rangeTreeY[i],l,r,Y);
    	cout<<endl<<endl;;
    	
    }
    /*
    Box* box = new Box(0,0,4,4);
    vector<Point> tarPoints;
    rangeTreeX[1].BoxSearch(rangeTreeX,rangeTreeY,l,r,*box,tarPoints,X,1,1);
	for(vector<Point>::iterator i = tarPoints.begin(); i < tarPoints.end();++i)
	{
		cout<<*i<<endl;
	}
	*/
	return 0;
}


bool XSortFunc(Point a,Point b)
{
	return a.x < b.x;
}

bool YSortFunc(Point a,Point b)
{
	return a.y < b.y;
}

RangeTree::RangeTree()
{
	nextDimension = NULL;
}

ostream& operator<<(ostream& out,Point point)
{
	out<<point.x<<" "<<point.y;
}

RangeTree::RangeTree(RangeTree* nextDimension,Point eleXDir,Point eleYDir,Direction dir)
{
	this->nextDimension = nextDimension;
	this->eleXDir = eleXDir;
	this->eleYDir = eleYDir;
	this->dir = dir;
}

Point Point::operator+(const Point& other)
{
	Point point;
	point.x = this->x + other.x;
	point.y = this->y + other.y;
	return point;
}

Box::Box()
{
}

Box::Box(int xMin,int yMin,int xMax,int yMax)
{
    this->xMin = xMin;
	this->yMin = yMin;
	this->xMax = xMax;
	this->yMax = yMax;	
}

//构建范围树 
void RangeTree::BuildTree(RangeTree* rangeTreeX,RangeTree** rangeTreeY,Point* xSortList,Point* ySortList,int l,int r,int index,int indexY,Direction dir)
{
	maxN = max(maxN,index);
	//maxIndex = max(index,maxIndex);
	int m = (l + r)/2;
	switch(dir)
	{
		case X:
			//递归到了叶结点 
			if(l == r)
			{
			    rangeTreeX[index].eleXDir = xSortList[m];
			    rangeTreeX[index].dir = dir;
			    rangeTreeX[index].nextDimension = rangeTreeY[index];
			    rangeTreeX[index].l = l;
			    rangeTreeX[index].r = r;
			    return;
			}
			//递归构建左子树 
			rangeTreeX[index].BuildTree(rangeTreeX,rangeTreeY,xSortList,ySortList,l,m,2*index,indexY,X);
            //递归构建右子树 
			rangeTreeX[index].BuildTree(rangeTreeX,rangeTreeY,xSortList,ySortList,m+1,r,2*index+1,indexY,X);
			//为了截窗查询,这里取中点 
			Point point;
			point.x = (rangeTreeX[2*index].eleXDir.x + rangeTreeX[2*index+1].eleXDir.x)/2;
			point.y = (rangeTreeX[2*index].eleXDir.y + rangeTreeX[2*index+1].eleXDir.y)/2; 
			//父结点设置为两个子结点的中点 
			rangeTreeX[index].eleXDir = point;
			//x方向的维度指针指向y方向的树 
			rangeTreeX[index].nextDimension = rangeTreeY[index]; 
			rangeTreeX[index].l = l;
			rangeTreeX[index].r = r;
			break;
		case Y:
			
			if(l == r)
			{
				//找到了叶结点,注意这里的l和r指的是x方向的l和r,为了方便用索引建树与x方向一一对应 
			    rangeTreeY[index][indexY].eleYDir = ySortList[m];
			    rangeTreeY[index][indexY].dir = dir;
			    rangeTreeY[index][indexY].nextDimension = NULL;
			    rangeTreeY[index][indexY].l = l;
			    rangeTreeY[index][indexY].r = r;
			    return;
		    }
		    
		    //递归构建左子树	
			rangeTreeY[index][indexY].BuildTree(rangeTreeX,rangeTreeY,xSortList,ySortList,l,m,index,2*indexY,Y);
			//递归构建右子树	
		    rangeTreeY[index][indexY].BuildTree(rangeTreeX,rangeTreeY,xSortList,ySortList,m+1,r,index,2*indexY + 1,Y);
		    
		    //为了截窗查询,这里取中点 
			point.y = (rangeTreeY[index][2*indexY].eleYDir.y + rangeTreeY[index][2*indexY+1].eleYDir.y)/2;
			point.x = (rangeTreeY[index][2*indexY].eleYDir.x + rangeTreeY[index][2*indexY+1].eleYDir.x)/2;
		    rangeTreeY[index][indexY].eleYDir = point;
		    
		    rangeTreeY[index][indexY].dir = dir;
		    //因为是二维的,y方向的维度指针没有指向任何树 
			rangeTreeY[index][indexY].nextDimension = NULL;
		    rangeTreeY[index][indexY].l = l;
			rangeTreeY[index][indexY].r = r;
			break;
	}
}
//debug用 
void RangeTree::Bfs(RangeTree* root,int l,int r,Direction dir)
{
	queue<int> q;
	q.push(1);
	int index = 1;
	root[1].depth = 1;
	while(!q.empty())
	{
		int a = q.front();
		q.pop(); 
		if(index < root[a].depth)
		{
		    index = root[a].depth;
			cout<<endl;	
		} 
		if(dir == X)
		{
			cout<<root[a].eleXDir<<" ";
		}
		else
		{
		    cout<<root[a].eleYDir<<" ";
		}
		
		if(root[a].r > root[a].l)
		{ 
		    root[2*a].depth = root[a].depth + 1;
		    root[2*a+1].depth = root[a].depth + 1;
		    q.push(2*a);
		    q.push(2*a+1);
		}
	}
}

//这样子建Y方向的树不太好,帮助x为l和r之间的结点建一个y方向的范围树 
void RangeTree::HelpBuildYTree(int rBound,int i,RangeTree** rangeTreeY,Point* xSortList,int l,int r)
{
	if(i > rBound)
	    return;
	//获取l到r之间的point 
	Point* list = new Point[r+1];
	for(int j = l; j <= r; ++j)
	{
	    list[j] = xSortList[j];
	}
	//对l到r之间的point排序 
	sort(list + l,list + r + 1,YSortFunc);
	//对y方向建树 
	rangeTreeY[i][1].BuildTree(NULL,rangeTreeY,list,list,l,r,i,1,Y);

	int m = (l + r)/2;
	//帮助构建左子树和右子树 
	if(m >= l)
	    HelpBuildYTree(rBound,i*2,rangeTreeY,xSortList,l,m);
	if(m+1 <= r)
	    HelpBuildYTree(rBound,i*2+1,rangeTreeY,xSortList,m+1,r);
}

//更好的方法应该是利用递归的归并排序的过程中分和合,保证组内有序,先进行递归,到叶结点的时候再开始建树,这样就不需要对每个结点刻意进行排序了,我这样子弄好像不太好 
void RangeTree::DivideAndBuildYTree(RangeTree** rangeTreeY,Point* xSortList,int l,int r,int index)
{
	if(l < r)
	{
	    int m = (l + r)/2;
	    DivideAndBuildYTree(rangeTreeY,xSortList,l,m,2*index);
	    DivideAndBuildYTree(rangeTreeY,xSortList,m + 1,r,2*index + 1);
	    MergeAndBuildYTree(rangeTreeY,xSortList,l,r,index);
    }
	
}

void RangeTree::MergeAndBuildYTree(RangeTree** rangeTreeY,Point* xSortList,int l,int r,int index)
{
	int m = (l + r)/2;
	Point* list = new Point[r - l + 1];
	int pl = l,pr = m + 1;
	int p = 0;
	while(pl <= m && pr <=r)
	{
		list[p++] = xSortList[pl].y < xSortList[pr].y? xSortList[pl++]:xSortList[pr++];
	}
	while(pl <= m)
	{
	    list[p++] = xSortList[pl++];
	}
	while(pr <= r)
	{

	    list[p++] = xSortList[pr++];
	}
	
	if(r - l == 1)
	{
		//分到倒数第二层,需要把单个的结点建树 
		BuildTree(NULL,rangeTreeY,xSortList,xSortList,l,l,2*index,1,Y);
		BuildTree(NULL,rangeTreeY,xSortList,xSortList,r,r,2*index + 1,1,Y);
	}
	
	for(int i = 0; i < p; ++i)
	{
		xSortList[i + l] = list[i]; 
	}
	//建非单个结点的树
	BuildTree(NULL,rangeTreeY,xSortList,xSortList,l,r,index,1,Y);
}

//这个是找位于box开区间内的点 
void RangeTree::BoxSearch(RangeTree* rangeTreeX,RangeTree** rangeTreeY,int l,int r,Box box,vector<Point>& points,Direction dir,int index,int indexY)
{
	int m = (l + r)/2;
	switch(dir)
	{
		case X:
			//树中的x完全在要被查找的框内 
		    if(l > box.xMin && l < box.xMax && r > box.xMin && r < box.xMax)
		    {
		    	BoxSearch(rangeTreeX,rangeTreeY,l,r,box,points,Y,index,1);
		    	return ;
			}
			
			//到了叶结点,并且叶结点不在框内
			if(l == r)
			{
				return;
			} 
			
			//树中的x左半边有可能有包含在框内的点 
			if(m >= box.xMax)
			{
				BoxSearch(rangeTreeX,rangeTreeY,l,m,box,points,X,2*index,1);
			}
			//树中的x右半边可能有包含在框内的点 
			if(m + 1 <= box.xMin)
			{
				BoxSearch(rangeTreeX,rangeTreeY,m + 1,r,box,points,X,2*index+1,1);
			}
			//两半边都可能存在符合条件的点 
			if(m >= box.xMin && m + 1 <= box.xMax)
			{
				BoxSearch(rangeTreeX,rangeTreeY,l,m,box,points,X,2*index,1);
				BoxSearch(rangeTreeX,rangeTreeY,m + 1,r,box,points,X,2*index+1,1);
			}
			break;
			
		case Y:
			//走到了这里相当于是X方向是完全在框内的,只需要考虑y方向是不是在框内即可

			//到了叶结点 
			if(l == r)
			{
				//找到了一个符合条件的点 
				if(rangeTreeY[index][indexY].eleYDir.y > box.yMin && rangeTreeY[index][indexY].eleYDir.y < box.yMax)
				{
					points.push_back(rangeTreeY[index][indexY].eleYDir);
				}
				return;
			}
			
			if(rangeTreeY[index][indexY].eleYDir.y >= box.yMax)
			{
				//递归查找左子树 
				BoxSearch(rangeTreeX,rangeTreeY,l,m,box,points,dir,index,2*indexY);
			}
			
			if(rangeTreeY[index][indexY].eleYDir.y <= box.yMin)
			{
				//递归查找右子树 
				BoxSearch(rangeTreeX,rangeTreeY,m + 1,r,box,points,dir,index,2*indexY + 1);
			}
			//左右子树都可能出现符合条件的点 
			if(rangeTreeY[index][indexY].eleYDir.y >= box.yMin && rangeTreeY[index][indexY].eleYDir.y <= box.yMax)
			{
				BoxSearch(rangeTreeX,rangeTreeY,l,m,box,points,dir,index,2*indexY);
				BoxSearch(rangeTreeX,rangeTreeY,m + 1,r,box,points,dir,index,2*indexY + 1);
			}
			
			break;
	}
}

 

最后

以上就是微笑学姐为你收集整理的范围树(C++实现,两种建树方法,截窗查询)范围树它长什么样子怎么建树截窗查询完整的代码的全部内容,希望文章能够帮你解决范围树(C++实现,两种建树方法,截窗查询)范围树它长什么样子怎么建树截窗查询完整的代码所遇到的程序开发问题。

如果觉得靠谱客网站的内容还不错,欢迎将靠谱客网站推荐给程序员好友。

本图文内容来源于网友提供,作为学习参考使用,或来自网络收集整理,版权属于原作者所有。
点赞(37)

评论列表共有 0 条评论

立即
投稿
返回
顶部