我是靠谱客的博主 落寞大炮,最近开发中收集的这篇文章主要介绍JS逆向之常见编码和混淆加密方式(一)1、对象属性的访问方式2、十六进制字符串3、unicode字符串3、ASCLL码混淆4、Base64加密5、MD5加密6、SHA1加密7、数值常量加密JS逆向 代码加密方式任重而道远,下一篇讲讲述AES对称加密、RSA非对称加密,整体替换,AAEncode加密和其他加密方式,觉得挺不错的,现在分享给大家,希望可以做个参考。

概述

一般情况下,js的代码加密用来加密混淆代码,降低代码的可读性,如果一段没有经过任何加密混淆的代码,很容易被第三方或者脚本破解利用,引发许多的安全问题,本文将从以下多个角度讲解,代码加密的一些基本原理**(注意:本文不涉及JS代码的混淆性,只讲解一些基本的JS逆向所需要的代码加密方式)**。

JS加密方式:

  • 1、对象属性的访问方式
  • 2、十六进制字符串
  • 3、unicode字符串
  • 3、ASCLL码混淆
  • 4、Base64加密
  • 5、MD5加密
  • 6、SHA1加密
  • 7、数值常量加密
  • **JS逆向 代码加密方式任重而道远,下一篇讲讲述AES对称加密、RSA非对称加密,整体替换,AAEncode加密和其他加密方式**

1、对象属性的访问方式

想混淆对象属性的访问方式其实很简单,在JS语法中,直接用.方法可以直接调用方法,也可以使用中括号+方法的形式去调用,中括号内传入一个字符串,这样就改变了对象属性的访问方式了,由于传入的是字符串,所以还可以进一步进行拼接+加密的方式去访问属性。这种方式后文也会讲到。

function Objects(name){
	this.name = name
	Objects.prototype.hello = function(){console.log("hello")}
}
var obj = new Objects("js")
obj.name //"js"
obj["name"] //"js"
obj.hello() // hello
obj["hello"]() // hello

2、十六进制字符串

上述方法讲述了,通过改变对象属性的方式,但即使是这样,代码的可读性仍然比较高,上述方法的字符串仍然可以进行混淆加密处理,字符串可以使用十六进制来表示.

function strtohex(code){
	var hexstr = [];
	for (i=0;i<code.length;i++){
		hexstr += "\x" + code.charCodeAt(i).toString(16);
	}
	return hexstr;
}

strtohex("123456")
"x31x32x33x34x35x36"

十六进制的还原方式也非常简单,在控制台直接输出十六进制字符串即可。

3、unicode字符串

除了支持十六进制字符串表示意外,还可以使用unicode字符串形式表示。

function unicode(str){
            var value='';
            for (var i = 0; i < str.length; i++) {
                value += '\u' + left_zero_4(parseInt(str.charCodeAt(i)).toString(16));
            }
            return value;
        }
function left_zero_4(str) {
    if (str != null && str != '' && str != 'undefined') {
        if (str.length == 2) {
            return '00' + str;
        }
    }
    return str;
}
unicode("123456")
"u0031u0032u0033u0034u0035u0036"

unicode 还原方法

function reconvert(str){ 
			str = str.replace(/(\u)(w{1,4})/gi,function($0){ 
				return (String.fromCharCode(parseInt((escape($0).replace(/(%5Cu)(w{1,4})/g,"$2")),16))); 
			}); 
			str = str.replace(/(&#x)(w{1,4});/gi,function($0){ 
				return String.fromCharCode(parseInt(escape($0).replace(/(%26%23x)(w{1,4})(%3B)/g,"$2"),16)); 
			}); 
			str = str.replace(/(&#)(d{1,6});/gi,function($0){ 
				return String.fromCharCode(parseInt(escape($0).replace(/(%26%23)(d{1,6})(%3B)/g,"$2"))); 
			}); 
			
			return str; 
		}
reconvert("u0031u0032u0033u0034u0035u0036")
"123456"

3、ASCLL码混淆

ascll码利用了字符的ascll的转码和解码方式进行混淆,加密和解密方式也非常简单

function strtoascll(code){
	for (i=0;i<code.length;i++){
		console.log(code.charCodeAt(i));
	}

}

strtoascll("123456")
VM3583:3 49
VM3583:3 50
VM3583:3 51
VM3583:3 52
VM3583:3 53
VM3583:3 54

还原ascll码的话使用String.fromcharcode方法。

String.fromCharCode(49,50,51,52,53,54)
"123456"

4、Base64加密

Base64加密一般都是用于字符串常量加密,在使用前,先把字符串进行加密,一般也多用于一些属性的访问方式,浏览器有自带的Base64编码和解码的函数,atob用来解码,btoa用来编码,把编码后的字符串放入代码中,也需要把解码函数放入才能执行代码

btoa("123")
"MTIz"
atob("MTIz")
"123"

通过这种方式,结合第一小节讲的通过中括号+方法名的方式访问对象属性,可以进一步的进行加密,例如:

function Objects(name){
	this.name = name
	Objects.prototype.hello = function(){console.log("hello")}
}
var obj = new Objects("js")
obj[atob("bmFtZQ==")] //"js"
obj[atob("aGVsbG8=")]() // hello

5、MD5加密

MD5信息摘要算法,一种被广泛使用的密码散列函数,可以产生出一个128位(16字节)的散列值(hash value),用于确保信息传输完整一致。需要注意的是,MD5加密算法是不可逆的,解密一般都是通过网站的接口.
首先看一下md5的大致加密方式。

/*
 * A JavaScript implementation of the RSA Data Security, Inc. MD5 Message
 * Digest Algorithm, as defined in RFC 1321.
 * Version 2.1 Copyright (C) Paul Johnston 1999 - 2002.
 * Other contributors: Greg Holt, Andrew Kepert, Ydnar, Lostinet
 * Distributed under the BSD License
 * See http://pajhome.org.uk/crypt/md5 for more info.
 */

/*
 * Configurable variables. You may need to tweak these to be compatible with
 * the server-side, but the defaults work in most cases.
 */
var hexcase = 0;  /* hex output format. 0 - lowercase; 1 - uppercase        */
var b64pad  = ""; /* base-64 pad character. "=" for strict RFC compliance   */
var chrsz   = 8;  /* bits per input character. 8 - ASCII; 16 - Unicode      */

/*
 * These are the functions you'll usually want to call
 * They take string arguments and return either hex or base-64 encoded strings
 */
function hex_md5(s){ return binl2hex(core_md5(str2binl(s), s.length * chrsz));}
function b64_md5(s){ return binl2b64(core_md5(str2binl(s), s.length * chrsz));}
function str_md5(s){ return binl2str(core_md5(str2binl(s), s.length * chrsz));}
function hex_hmac_md5(key, data) { return binl2hex(core_hmac_md5(key, data)); }
function b64_hmac_md5(key, data) { return binl2b64(core_hmac_md5(key, data)); }
function str_hmac_md5(key, data) { return binl2str(core_hmac_md5(key, data)); }

/*
 * Perform a simple self-test to see if the VM is working
 */
function md5_vm_test()
{
  return hex_md5("abc") == "900150983cd24fb0d6963f7d28e17f72";
}

/*
 * Calculate the MD5 of an array of little-endian words, and a bit length
 */
function core_md5(x, len)
{
  /* append padding */
  x[len >> 5] |= 0x80 << ((len) % 32);
  x[(((len + 64) >>> 9) << 4) + 14] = len;

  var a =  1732584193;
  var b = -271733879;
  var c = -1732584194;
  var d =  271733878;

  for(var i = 0; i < x.length; i += 16)
  {
    var olda = a;
    var oldb = b;
    var oldc = c;
    var oldd = d;

    a = md5_ff(a, b, c, d, x[i+ 0], 7 , -680876936);
    d = md5_ff(d, a, b, c, x[i+ 1], 12, -389564586);
    c = md5_ff(c, d, a, b, x[i+ 2], 17,  606105819);
    b = md5_ff(b, c, d, a, x[i+ 3], 22, -1044525330);
    a = md5_ff(a, b, c, d, x[i+ 4], 7 , -176418897);
    d = md5_ff(d, a, b, c, x[i+ 5], 12,  1200080426);
    c = md5_ff(c, d, a, b, x[i+ 6], 17, -1473231341);
    b = md5_ff(b, c, d, a, x[i+ 7], 22, -45705983);
    a = md5_ff(a, b, c, d, x[i+ 8], 7 ,  1770035416);
    d = md5_ff(d, a, b, c, x[i+ 9], 12, -1958414417);
    c = md5_ff(c, d, a, b, x[i+10], 17, -42063);
    b = md5_ff(b, c, d, a, x[i+11], 22, -1990404162);
    a = md5_ff(a, b, c, d, x[i+12], 7 ,  1804603682);
    d = md5_ff(d, a, b, c, x[i+13], 12, -40341101);
    c = md5_ff(c, d, a, b, x[i+14], 17, -1502002290);
    b = md5_ff(b, c, d, a, x[i+15], 22,  1236535329);

    a = md5_gg(a, b, c, d, x[i+ 1], 5 , -165796510);
    d = md5_gg(d, a, b, c, x[i+ 6], 9 , -1069501632);
    c = md5_gg(c, d, a, b, x[i+11], 14,  643717713);
    b = md5_gg(b, c, d, a, x[i+ 0], 20, -373897302);
    a = md5_gg(a, b, c, d, x[i+ 5], 5 , -701558691);
    d = md5_gg(d, a, b, c, x[i+10], 9 ,  38016083);
    c = md5_gg(c, d, a, b, x[i+15], 14, -660478335);
    b = md5_gg(b, c, d, a, x[i+ 4], 20, -405537848);
    a = md5_gg(a, b, c, d, x[i+ 9], 5 ,  568446438);
    d = md5_gg(d, a, b, c, x[i+14], 9 , -1019803690);
    c = md5_gg(c, d, a, b, x[i+ 3], 14, -187363961);
    b = md5_gg(b, c, d, a, x[i+ 8], 20,  1163531501);
    a = md5_gg(a, b, c, d, x[i+13], 5 , -1444681467);
    d = md5_gg(d, a, b, c, x[i+ 2], 9 , -51403784);
    c = md5_gg(c, d, a, b, x[i+ 7], 14,  1735328473);
    b = md5_gg(b, c, d, a, x[i+12], 20, -1926607734);

    a = md5_hh(a, b, c, d, x[i+ 5], 4 , -378558);
    d = md5_hh(d, a, b, c, x[i+ 8], 11, -2022574463);
    c = md5_hh(c, d, a, b, x[i+11], 16,  1839030562);
    b = md5_hh(b, c, d, a, x[i+14], 23, -35309556);
    a = md5_hh(a, b, c, d, x[i+ 1], 4 , -1530992060);
    d = md5_hh(d, a, b, c, x[i+ 4], 11,  1272893353);
    c = md5_hh(c, d, a, b, x[i+ 7], 16, -155497632);
    b = md5_hh(b, c, d, a, x[i+10], 23, -1094730640);
    a = md5_hh(a, b, c, d, x[i+13], 4 ,  681279174);
    d = md5_hh(d, a, b, c, x[i+ 0], 11, -358537222);
    c = md5_hh(c, d, a, b, x[i+ 3], 16, -722521979);
    b = md5_hh(b, c, d, a, x[i+ 6], 23,  76029189);
    a = md5_hh(a, b, c, d, x[i+ 9], 4 , -640364487);
    d = md5_hh(d, a, b, c, x[i+12], 11, -421815835);
    c = md5_hh(c, d, a, b, x[i+15], 16,  530742520);
    b = md5_hh(b, c, d, a, x[i+ 2], 23, -995338651);

    a = md5_ii(a, b, c, d, x[i+ 0], 6 , -198630844);
    d = md5_ii(d, a, b, c, x[i+ 7], 10,  1126891415);
    c = md5_ii(c, d, a, b, x[i+14], 15, -1416354905);
    b = md5_ii(b, c, d, a, x[i+ 5], 21, -57434055);
    a = md5_ii(a, b, c, d, x[i+12], 6 ,  1700485571);
    d = md5_ii(d, a, b, c, x[i+ 3], 10, -1894986606);
    c = md5_ii(c, d, a, b, x[i+10], 15, -1051523);
    b = md5_ii(b, c, d, a, x[i+ 1], 21, -2054922799);
    a = md5_ii(a, b, c, d, x[i+ 8], 6 ,  1873313359);
    d = md5_ii(d, a, b, c, x[i+15], 10, -30611744);
    c = md5_ii(c, d, a, b, x[i+ 6], 15, -1560198380);
    b = md5_ii(b, c, d, a, x[i+13], 21,  1309151649);
    a = md5_ii(a, b, c, d, x[i+ 4], 6 , -145523070);
    d = md5_ii(d, a, b, c, x[i+11], 10, -1120210379);
    c = md5_ii(c, d, a, b, x[i+ 2], 15,  718787259);
    b = md5_ii(b, c, d, a, x[i+ 9], 21, -343485551);

    a = safe_add(a, olda);
    b = safe_add(b, oldb);
    c = safe_add(c, oldc);
    d = safe_add(d, oldd);
  }
  return Array(a, b, c, d);

}

/*
 * These functions implement the four basic operations the algorithm uses.
 */
function md5_cmn(q, a, b, x, s, t)
{
  return safe_add(bit_rol(safe_add(safe_add(a, q), safe_add(x, t)), s),b);
}
function md5_ff(a, b, c, d, x, s, t)
{
  return md5_cmn((b & c) | ((~b) & d), a, b, x, s, t);
}
function md5_gg(a, b, c, d, x, s, t)
{
  return md5_cmn((b & d) | (c & (~d)), a, b, x, s, t);
}
function md5_hh(a, b, c, d, x, s, t)
{
  return md5_cmn(b ^ c ^ d, a, b, x, s, t);
}
function md5_ii(a, b, c, d, x, s, t)
{
  return md5_cmn(c ^ (b | (~d)), a, b, x, s, t);
}

/*
 * Calculate the HMAC-MD5, of a key and some data
 */
function core_hmac_md5(key, data)
{
  var bkey = str2binl(key);
  if(bkey.length > 16) bkey = core_md5(bkey, key.length * chrsz);

  var ipad = Array(16), opad = Array(16);
  for(var i = 0; i < 16; i++)
  {
    ipad[i] = bkey[i] ^ 0x36363636;
    opad[i] = bkey[i] ^ 0x5C5C5C5C;
  }

  var hash = core_md5(ipad.concat(str2binl(data)), 512 + data.length * chrsz);
  return core_md5(opad.concat(hash), 512 + 128);
}

/*
 * Add integers, wrapping at 2^32. This uses 16-bit operations internally
 * to work around bugs in some JS interpreters.
 */
function safe_add(x, y)
{
  var lsw = (x & 0xFFFF) + (y & 0xFFFF);
  var msw = (x >> 16) + (y >> 16) + (lsw >> 16);
  return (msw << 16) | (lsw & 0xFFFF);
}

/*
 * Bitwise rotate a 32-bit number to the left.
 */
function bit_rol(num, cnt)
{
  return (num << cnt) | (num >>> (32 - cnt));
}

/*
 * Convert a string to an array of little-endian words
 * If chrsz is ASCII, characters >255 have their hi-byte silently ignored.
 */
function str2binl(str)
{
  var bin = Array();
  var mask = (1 << chrsz) - 1;
  for(var i = 0; i < str.length * chrsz; i += chrsz)
    bin[i>>5] |= (str.charCodeAt(i / chrsz) & mask) << (i%32);
  return bin;
}

/*
 * Convert an array of little-endian words to a string
 */
function binl2str(bin)
{
  var str = "";
  var mask = (1 << chrsz) - 1;
  for(var i = 0; i < bin.length * 32; i += chrsz)
    str += String.fromCharCode((bin[i>>5] >>> (i % 32)) & mask);
  return str;
}

/*
 * Convert an array of little-endian words to a hex string.
 */
function binl2hex(binarray)
{
  var hex_tab = hexcase ? "0123456789ABCDEF" : "0123456789abcdef";
  var str = "";
  for(var i = 0; i < binarray.length * 4; i++)
  {
    str += hex_tab.charAt((binarray[i>>2] >> ((i%4)*8+4)) & 0xF) +
           hex_tab.charAt((binarray[i>>2] >> ((i%4)*8  )) & 0xF);
  }
  return str;
}

/*
 * Convert an array of little-endian words to a base-64 string
 */
function binl2b64(binarray)
{
  var tab = "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789+/";
  var str = "";
  for(var i = 0; i < binarray.length * 4; i += 3)
  {
    var triplet = (((binarray[i   >> 2] >> 8 * ( i   %4)) & 0xFF) << 16)
                | (((binarray[i+1 >> 2] >> 8 * ((i+1)%4)) & 0xFF) << 8 )
                |  ((binarray[i+2 >> 2] >> 8 * ((i+2)%4)) & 0xFF);
    for(var j = 0; j < 4; j++)
    {
      if(i * 8 + j * 6 > binarray.length * 32) str += b64pad;
      else str += tab.charAt((triplet >> 6*(3-j)) & 0x3F);
    }
  }
  return str;
}

执行完这段代码后,就可以执行加密了

hex_md5("123456");
"e10adc3949ba59abbe56e057f20f883e"

一般来说,这样加密后的字符串会传入后台去比对,由于MD5不可逆,所以加密后的字符串是无法解密的

6、SHA1加密

SHA-1(中文名:安全散列算法1)是一种密码散列函数,美国国家安全局设计,并由美国国家标准技术研究所(NIST)发布为联邦数据处理标准(FIPS)。sha1相比MD5,SHA1所产生的摘要比MD5长32位,安全性更高,一般没有经过高度混淆的JS,sha1加密的关键词就是sha1,下面是sha1加密的源码,sha1同样也是不可逆的

/*
 * [js-sha1]{@link https://github.com/emn178/js-sha1}
 *
 * @version 0.6.0
 * @author Chen, Yi-Cyuan [emn178@gmail.com]
 * @copyright Chen, Yi-Cyuan 2014-2017
 * @license MIT
 */
/*jslint bitwise: true */
(function() {
  'use strict';

  var root = typeof window === 'object' ? window : {};
  var NODE_JS = !root.JS_SHA1_NO_NODE_JS && typeof process === 'object' && process.versions && process.versions.node;
  if (NODE_JS) {
    root = global;
  }
  var COMMON_JS = !root.JS_SHA1_NO_COMMON_JS && typeof module === 'object' && module.exports;
  var AMD = typeof define === 'function' && define.amd;
  var HEX_CHARS = '0123456789abcdef'.split('');
  var EXTRA = [-2147483648, 8388608, 32768, 128];
  var SHIFT = [24, 16, 8, 0];
  var OUTPUT_TYPES = ['hex', 'array', 'digest', 'arrayBuffer'];

  var blocks = [];

  var createOutputMethod = function (outputType) {
    return function (message) {
      return new Sha1(true).update(message)[outputType]();
    };
  };

  var createMethod = function () {
    var method = createOutputMethod('hex');
    if (NODE_JS) {
      method = nodeWrap(method);
    }
    method.create = function () {
      return new Sha1();
    };
    method.update = function (message) {
      return method.create().update(message);
    };
    for (var i = 0; i < OUTPUT_TYPES.length; ++i) {
      var type = OUTPUT_TYPES[i];
      method[type] = createOutputMethod(type);
    }
    return method;
  };

  var nodeWrap = function (method) {
    var crypto = eval("require('crypto')");
    var Buffer = eval("require('buffer').Buffer");
    var nodeMethod = function (message) {
      if (typeof message === 'string') {
        return crypto.createHash('sha1').update(message, 'utf8').digest('hex');
      } else if (message.constructor === ArrayBuffer) {
        message = new Uint8Array(message);
      } else if (message.length === undefined) {
        return method(message);
      }
      return crypto.createHash('sha1').update(new Buffer(message)).digest('hex');
    };
    return nodeMethod;
  };

  function Sha1(sharedMemory) {
    if (sharedMemory) {
      blocks[0] = blocks[16] = blocks[1] = blocks[2] = blocks[3] =
      blocks[4] = blocks[5] = blocks[6] = blocks[7] =
      blocks[8] = blocks[9] = blocks[10] = blocks[11] =
      blocks[12] = blocks[13] = blocks[14] = blocks[15] = 0;
      this.blocks = blocks;
    } else {
      this.blocks = [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0];
    }

    this.h0 = 0x67452301;
    this.h1 = 0xEFCDAB89;
    this.h2 = 0x98BADCFE;
    this.h3 = 0x10325476;
    this.h4 = 0xC3D2E1F0;

    this.block = this.start = this.bytes = this.hBytes = 0;
    this.finalized = this.hashed = false;
    this.first = true;
  }

  Sha1.prototype.update = function (message) {
    if (this.finalized) {
      return;
    }
    var notString = typeof(message) !== 'string';
    if (notString && message.constructor === root.ArrayBuffer) {
      message = new Uint8Array(message);
    }
    var code, index = 0, i, length = message.length || 0, blocks = this.blocks;

    while (index < length) {
      if (this.hashed) {
        this.hashed = false;
        blocks[0] = this.block;
        blocks[16] = blocks[1] = blocks[2] = blocks[3] =
        blocks[4] = blocks[5] = blocks[6] = blocks[7] =
        blocks[8] = blocks[9] = blocks[10] = blocks[11] =
        blocks[12] = blocks[13] = blocks[14] = blocks[15] = 0;
      }

      if(notString) {
        for (i = this.start; index < length && i < 64; ++index) {
          blocks[i >> 2] |= message[index] << SHIFT[i++ & 3];
        }
      } else {
        for (i = this.start; index < length && i < 64; ++index) {
          code = message.charCodeAt(index);
          if (code < 0x80) {
            blocks[i >> 2] |= code << SHIFT[i++ & 3];
          } else if (code < 0x800) {
            blocks[i >> 2] |= (0xc0 | (code >> 6)) << SHIFT[i++ & 3];
            blocks[i >> 2] |= (0x80 | (code & 0x3f)) << SHIFT[i++ & 3];
          } else if (code < 0xd800 || code >= 0xe000) {
            blocks[i >> 2] |= (0xe0 | (code >> 12)) << SHIFT[i++ & 3];
            blocks[i >> 2] |= (0x80 | ((code >> 6) & 0x3f)) << SHIFT[i++ & 3];
            blocks[i >> 2] |= (0x80 | (code & 0x3f)) << SHIFT[i++ & 3];
          } else {
            code = 0x10000 + (((code & 0x3ff) << 10) | (message.charCodeAt(++index) & 0x3ff));
            blocks[i >> 2] |= (0xf0 | (code >> 18)) << SHIFT[i++ & 3];
            blocks[i >> 2] |= (0x80 | ((code >> 12) & 0x3f)) << SHIFT[i++ & 3];
            blocks[i >> 2] |= (0x80 | ((code >> 6) & 0x3f)) << SHIFT[i++ & 3];
            blocks[i >> 2] |= (0x80 | (code & 0x3f)) << SHIFT[i++ & 3];
          }
        }
      }

      this.lastByteIndex = i;
      this.bytes += i - this.start;
      if (i >= 64) {
        this.block = blocks[16];
        this.start = i - 64;
        this.hash();
        this.hashed = true;
      } else {
        this.start = i;
      }
    }
    if (this.bytes > 4294967295) {
      this.hBytes += this.bytes / 4294967296 << 0;
      this.bytes = this.bytes % 4294967296;
    }
    return this;
  };

  Sha1.prototype.finalize = function () {
    if (this.finalized) {
      return;
    }
    this.finalized = true;
    var blocks = this.blocks, i = this.lastByteIndex;
    blocks[16] = this.block;
    blocks[i >> 2] |= EXTRA[i & 3];
    this.block = blocks[16];
    if (i >= 56) {
      if (!this.hashed) {
        this.hash();
      }
      blocks[0] = this.block;
      blocks[16] = blocks[1] = blocks[2] = blocks[3] =
      blocks[4] = blocks[5] = blocks[6] = blocks[7] =
      blocks[8] = blocks[9] = blocks[10] = blocks[11] =
      blocks[12] = blocks[13] = blocks[14] = blocks[15] = 0;
    }
    blocks[14] = this.hBytes << 3 | this.bytes >>> 29;
    blocks[15] = this.bytes << 3;
    this.hash();
  };

  Sha1.prototype.hash = function () {
    var a = this.h0, b = this.h1, c = this.h2, d = this.h3, e = this.h4;
    var f, j, t, blocks = this.blocks;

    for(j = 16; j < 80; ++j) {
      t = blocks[j - 3] ^ blocks[j - 8] ^ blocks[j - 14] ^ blocks[j - 16];
      blocks[j] =  (t << 1) | (t >>> 31);
    }

    for(j = 0; j < 20; j += 5) {
      f = (b & c) | ((~b) & d);
      t = (a << 5) | (a >>> 27);
      e = t + f + e + 1518500249 + blocks[j] << 0;
      b = (b << 30) | (b >>> 2);

      f = (a & b) | ((~a) & c);
      t = (e << 5) | (e >>> 27);
      d = t + f + d + 1518500249 + blocks[j + 1] << 0;
      a = (a << 30) | (a >>> 2);

      f = (e & a) | ((~e) & b);
      t = (d << 5) | (d >>> 27);
      c = t + f + c + 1518500249 + blocks[j + 2] << 0;
      e = (e << 30) | (e >>> 2);

      f = (d & e) | ((~d) & a);
      t = (c << 5) | (c >>> 27);
      b = t + f + b + 1518500249 + blocks[j + 3] << 0;
      d = (d << 30) | (d >>> 2);

      f = (c & d) | ((~c) & e);
      t = (b << 5) | (b >>> 27);
      a = t + f + a + 1518500249 + blocks[j + 4] << 0;
      c = (c << 30) | (c >>> 2);
    }

    for(; j < 40; j += 5) {
      f = b ^ c ^ d;
      t = (a << 5) | (a >>> 27);
      e = t + f + e + 1859775393 + blocks[j] << 0;
      b = (b << 30) | (b >>> 2);

      f = a ^ b ^ c;
      t = (e << 5) | (e >>> 27);
      d = t + f + d + 1859775393 + blocks[j + 1] << 0;
      a = (a << 30) | (a >>> 2);

      f = e ^ a ^ b;
      t = (d << 5) | (d >>> 27);
      c = t + f + c + 1859775393 + blocks[j + 2] << 0;
      e = (e << 30) | (e >>> 2);

      f = d ^ e ^ a;
      t = (c << 5) | (c >>> 27);
      b = t + f + b + 1859775393 + blocks[j + 3] << 0;
      d = (d << 30) | (d >>> 2);

      f = c ^ d ^ e;
      t = (b << 5) | (b >>> 27);
      a = t + f + a + 1859775393 + blocks[j + 4] << 0;
      c = (c << 30) | (c >>> 2);
    }

    for(; j < 60; j += 5) {
      f = (b & c) | (b & d) | (c & d);
      t = (a << 5) | (a >>> 27);
      e = t + f + e - 1894007588 + blocks[j] << 0;
      b = (b << 30) | (b >>> 2);

      f = (a & b) | (a & c) | (b & c);
      t = (e << 5) | (e >>> 27);
      d = t + f + d - 1894007588 + blocks[j + 1] << 0;
      a = (a << 30) | (a >>> 2);

      f = (e & a) | (e & b) | (a & b);
      t = (d << 5) | (d >>> 27);
      c = t + f + c - 1894007588 + blocks[j + 2] << 0;
      e = (e << 30) | (e >>> 2);

      f = (d & e) | (d & a) | (e & a);
      t = (c << 5) | (c >>> 27);
      b = t + f + b - 1894007588 + blocks[j + 3] << 0;
      d = (d << 30) | (d >>> 2);

      f = (c & d) | (c & e) | (d & e);
      t = (b << 5) | (b >>> 27);
      a = t + f + a - 1894007588 + blocks[j + 4] << 0;
      c = (c << 30) | (c >>> 2);
    }

    for(; j < 80; j += 5) {
      f = b ^ c ^ d;
      t = (a << 5) | (a >>> 27);
      e = t + f + e - 899497514 + blocks[j] << 0;
      b = (b << 30) | (b >>> 2);

      f = a ^ b ^ c;
      t = (e << 5) | (e >>> 27);
      d = t + f + d - 899497514 + blocks[j + 1] << 0;
      a = (a << 30) | (a >>> 2);

      f = e ^ a ^ b;
      t = (d << 5) | (d >>> 27);
      c = t + f + c - 899497514 + blocks[j + 2] << 0;
      e = (e << 30) | (e >>> 2);

      f = d ^ e ^ a;
      t = (c << 5) | (c >>> 27);
      b = t + f + b - 899497514 + blocks[j + 3] << 0;
      d = (d << 30) | (d >>> 2);

      f = c ^ d ^ e;
      t = (b << 5) | (b >>> 27);
      a = t + f + a - 899497514 + blocks[j + 4] << 0;
      c = (c << 30) | (c >>> 2);
    }

    this.h0 = this.h0 + a << 0;
    this.h1 = this.h1 + b << 0;
    this.h2 = this.h2 + c << 0;
    this.h3 = this.h3 + d << 0;
    this.h4 = this.h4 + e << 0;
  };

  Sha1.prototype.hex = function () {
    this.finalize();

    var h0 = this.h0, h1 = this.h1, h2 = this.h2, h3 = this.h3, h4 = this.h4;

    return HEX_CHARS[(h0 >> 28) & 0x0F] + HEX_CHARS[(h0 >> 24) & 0x0F] +
           HEX_CHARS[(h0 >> 20) & 0x0F] + HEX_CHARS[(h0 >> 16) & 0x0F] +
           HEX_CHARS[(h0 >> 12) & 0x0F] + HEX_CHARS[(h0 >> 8) & 0x0F] +
           HEX_CHARS[(h0 >> 4) & 0x0F] + HEX_CHARS[h0 & 0x0F] +
           HEX_CHARS[(h1 >> 28) & 0x0F] + HEX_CHARS[(h1 >> 24) & 0x0F] +
           HEX_CHARS[(h1 >> 20) & 0x0F] + HEX_CHARS[(h1 >> 16) & 0x0F] +
           HEX_CHARS[(h1 >> 12) & 0x0F] + HEX_CHARS[(h1 >> 8) & 0x0F] +
           HEX_CHARS[(h1 >> 4) & 0x0F] + HEX_CHARS[h1 & 0x0F] +
           HEX_CHARS[(h2 >> 28) & 0x0F] + HEX_CHARS[(h2 >> 24) & 0x0F] +
           HEX_CHARS[(h2 >> 20) & 0x0F] + HEX_CHARS[(h2 >> 16) & 0x0F] +
           HEX_CHARS[(h2 >> 12) & 0x0F] + HEX_CHARS[(h2 >> 8) & 0x0F] +
           HEX_CHARS[(h2 >> 4) & 0x0F] + HEX_CHARS[h2 & 0x0F] +
           HEX_CHARS[(h3 >> 28) & 0x0F] + HEX_CHARS[(h3 >> 24) & 0x0F] +
           HEX_CHARS[(h3 >> 20) & 0x0F] + HEX_CHARS[(h3 >> 16) & 0x0F] +
           HEX_CHARS[(h3 >> 12) & 0x0F] + HEX_CHARS[(h3 >> 8) & 0x0F] +
           HEX_CHARS[(h3 >> 4) & 0x0F] + HEX_CHARS[h3 & 0x0F] +
           HEX_CHARS[(h4 >> 28) & 0x0F] + HEX_CHARS[(h4 >> 24) & 0x0F] +
           HEX_CHARS[(h4 >> 20) & 0x0F] + HEX_CHARS[(h4 >> 16) & 0x0F] +
           HEX_CHARS[(h4 >> 12) & 0x0F] + HEX_CHARS[(h4 >> 8) & 0x0F] +
           HEX_CHARS[(h4 >> 4) & 0x0F] + HEX_CHARS[h4 & 0x0F];
  };

  Sha1.prototype.toString = Sha1.prototype.hex;

  Sha1.prototype.digest = function () {
    this.finalize();

    var h0 = this.h0, h1 = this.h1, h2 = this.h2, h3 = this.h3, h4 = this.h4;

    return [
      (h0 >> 24) & 0xFF, (h0 >> 16) & 0xFF, (h0 >> 8) & 0xFF, h0 & 0xFF,
      (h1 >> 24) & 0xFF, (h1 >> 16) & 0xFF, (h1 >> 8) & 0xFF, h1 & 0xFF,
      (h2 >> 24) & 0xFF, (h2 >> 16) & 0xFF, (h2 >> 8) & 0xFF, h2 & 0xFF,
      (h3 >> 24) & 0xFF, (h3 >> 16) & 0xFF, (h3 >> 8) & 0xFF, h3 & 0xFF,
      (h4 >> 24) & 0xFF, (h4 >> 16) & 0xFF, (h4 >> 8) & 0xFF, h4 & 0xFF
    ];
  };

  Sha1.prototype.array = Sha1.prototype.digest;

  Sha1.prototype.arrayBuffer = function () {
    this.finalize();

    var buffer = new ArrayBuffer(20);
    var dataView = new DataView(buffer);
    dataView.setUint32(0, this.h0);
    dataView.setUint32(4, this.h1);
    dataView.setUint32(8, this.h2);
    dataView.setUint32(12, this.h3);
    dataView.setUint32(16, this.h4);
    return buffer;
  };

  var exports = createMethod();

  if (COMMON_JS) {
    module.exports = exports;
  } else {
    root.sha1 = exports;
    if (AMD) {
      define(function () {
        return exports;
      });
    }
  }
})();

执行完代码后,直接运行sha1加密代码

sha1("123456")
"7c4a8d09ca3762af61e59520943dc26494f8941b"

7、数值常量加密

算法加密过程中,也会使用到数值,可以看到,以上算法中,在算法的加密过程中,也会用到一些数值常量,通常我们也会使用搜索常量的方式来确定是哪种加密方式,不过,这种常量也可以进行加密混淆,他可以写成任意进制类型,也可以使用其他的简单加密,可以使用位异或的特性来加密,如果 a ^ b = c 那么, c ^ b = a, 用这种方式,可以取代加密算法中的常量。下面是一个简单的例子

1 ^ 2  = 3 // 3
1 = 3 ^ 2 # 这里的常量1 就可以用 3 ^ 2的方式来替代

除开上面的异或,也可能使用多种混淆方式结合使用。

JS逆向 代码加密方式任重而道远,下一篇讲讲述AES对称加密、RSA非对称加密,整体替换,AAEncode加密和其他加密方式

在这里插入图片描述

最后

以上就是落寞大炮为你收集整理的JS逆向之常见编码和混淆加密方式(一)1、对象属性的访问方式2、十六进制字符串3、unicode字符串3、ASCLL码混淆4、Base64加密5、MD5加密6、SHA1加密7、数值常量加密JS逆向 代码加密方式任重而道远,下一篇讲讲述AES对称加密、RSA非对称加密,整体替换,AAEncode加密和其他加密方式的全部内容,希望文章能够帮你解决JS逆向之常见编码和混淆加密方式(一)1、对象属性的访问方式2、十六进制字符串3、unicode字符串3、ASCLL码混淆4、Base64加密5、MD5加密6、SHA1加密7、数值常量加密JS逆向 代码加密方式任重而道远,下一篇讲讲述AES对称加密、RSA非对称加密,整体替换,AAEncode加密和其他加密方式所遇到的程序开发问题。

如果觉得靠谱客网站的内容还不错,欢迎将靠谱客网站推荐给程序员好友。

本图文内容来源于网友提供,作为学习参考使用,或来自网络收集整理,版权属于原作者所有。
点赞(34)

评论列表共有 0 条评论

立即
投稿
返回
顶部