我是靠谱客的博主 自信百褶裙,最近开发中收集的这篇文章主要介绍MindSpore入门--跑通DeepFM模型训练经验MindSpore入门–跑通DeepFM模型A Practice of MindSpore – DeepFM,觉得挺不错的,现在分享给大家,希望可以做个参考。

概述

MindSpore入门–跑通DeepFM模型

A Practice of MindSpore – DeepFM

MindSpore入门–跑通DeepFM模型

本文开发环境如下

  • ModelArts
  • Notebook
  • Ascend*8

本文主要内容如下

  • 环境准备
  • 数据准备
  • 模型训练
  • 发布算法

1. 环境准备

注意事项:

  • 本次笔者基于Ascend进行8卡运行,并且配置了500G的云硬盘。8卡主要作用是防止内存溢出,导致预处理时进程被Killed

1.1 克隆仓库并进入到本地deepfm目录

git clone https://gitee.com/mindspore/models.git mindspore_models
cd mindspore_models/official/recommend/deepfm

可以使用find . -print|sed -e 's;[^/]*/;|--;g;s;--|; |;g'查看deepfm目录结构,目录结构如下所示。

.
|--Dockerfile
|--README.md
|--README_CN.md
|--ascend310_infer
|   |--CMakeLists.txt
|   |--build.sh
|   |--inc
|   |   |--utils.h
|   |--src
|   |   |--main.cc
|   |   |--utils.cc
|--default_config.yaml
|--eval.py
|--export.py
|--infer
|   |--Dockerfile
|   |--convert
|   |   |--convert_om.sh
|   |--data
|   |   |--config
|   |   |   |--deepfm_ms.pipeline
|   |--docker_start_infer.sh
|   |--mindrecord2bin.py
|   |--mxbase
|   |   |--MxBaseInfer.h
|   |   |--MxDeepFmPostProcessor.h
|   |   |--build.sh
|   |   |--eval.py
|   |   |--infer.sh
|   |   |--main.cpp
|   |--requirements.txt
|   |--sdk
|   |   |--sample
|   |   |   |--build.sh
|   |   |   |--eval.py
|   |   |   |--main.cpp
|--mindspore_hub_conf.py
|--modelart
|   |--start.py
|--postprocess.py
|--preprocess.py
|--requirements.txt
|--scripts
|   |--docker_start.sh
|   |--run_distribute_train.sh
|   |--run_distribute_train_gpu.sh
|   |--run_eval.sh
|   |--run_infer_310.sh
|   |--run_standalone_train.sh
|--src
|   |--__init__.py
|   |--callback.py
|   |--dataset.py
|   |--deepfm.py
|   |--model_utils
|   |   |--__init__.py
|   |   |--config.py
|   |   |--device_adapter.py
|   |   |--local_adapter.py
|   |   |--moxing_adapter.py
|   |--preprocess_data.py
|--train.py

1.2 准备开发环境

pip3 install -r requirements.txt

2.数据准备

2.1 下载数据集

数据集下载地址Criteo Kaggle Display Advertising Challenge Dataset

  • http://go.criteo.net/criteo-research-kaggle-display-advertising-challenge-dataset.tar.gz

注意事项

  • 如果使用wget下载速度慢,可以使用迅雷等下载工具下载完成后再上传到服务器。

2.1.1 创建原始数据保存目录,并下载数据集

mkdir origin_data && cd origin_data
wget http://go.criteo.net/criteo-research-kaggle-display-advertising-challenge-dataset.tar.gz

2.1.2 检测数据集MD5(可跳过)

md5sum kaggle-display-advertising-challenge-dataset.tar.gz

会输出如下内容

df9b1b3766d9ff91d5ca3eb3d23bed27  kaggle-display-advertising-challenge-dataset.tar.gz

2.1.3 解压数据集

tar -zxvf kaggle-display-advertising-challenge-dataset.tar.gz

2.1.4 查看数据集目录结构

find . -print|sed -e 's;[^/]*/;|--;g;s;--|;   |;g'

会输出如下内容

.
|--readme.txt
|--test.txt
|--train.txt

2.1.5 数据预处理-转换为MindRecord

数据预处理

cd ../src
python -m preprocess_data --data_path=../ --dense_dim=13 --slot_dim=26 --threshold=100 --train_line_count=45840617 --skip_id_convert=0

会输出如下内容

{'enable_modelarts': 'Whether training on modelarts, default: False', 'data_url': 'Dataset url for obs', 'train_url': 'Training output url for obs', 'data_path': 'Dataset path for local', 'output_path': 'Training output path for local', 'device_target': 'device target, support Ascend, GPU and CPU.', 'dataset_path': 'Dataset path', 'batch_size': 'batch size', 'ckpt_path': 'Checkpoint path', 'eval_file_name': 'Auc log file path. Default: "./auc.log"', 'loss_file_name': 'Loss log file path. Default: "./loss.log"', 'do_eval': 'Do evaluation or not, only support "True" or "False". Default: "True"', 'checkpoint_path': 'Checkpoint file path', 'device_id': 'Device id', 'ckpt_file': 'Checkpoint file path.', 'file_name': 'output file name.', 'file_format': 'file format', 'result_path': 'Result path', 'label_path': 'label path', 'dense_dim': 'The number of your continues fields', 'slot_dim': 'The number of your sparse fields, it can also be called catelogy features.', 'threshold': 'Word frequency below this will be regarded as OOV. It aims to reduce the vocab size', 'train_line_count': 'The number of examples in your dataset', 'skip_id_convert': 'Skip the id convert, regarding the original id as the final id.'}
{'batch_size': 16000,
'checkpoint_path': '/cache/train/deepfm-5_2582.ckpt',
'checkpoint_url': '',
'ckpt_file': '/cache/train/deepfm-5_2582.ckpt',
'ckpt_file_name_prefix': 'deepfm',
'ckpt_path': '/cache/train',
'config_path': '/home/ma-user/work/DeepFM-kewei/mindspore_models/official/recommend/deepfm/src/model_utils/../../default_config.yaml',
'convert_dtype': True,
'data_emb_dim': 80,
'data_field_size': 39,
'data_format': 1,
'data_path': '../',
'data_url': '',
'data_vocab_size': 184965,
'dataset_path': '/cache/data',
'deep_layer_args': [[1024, 512, 256, 128], 'relu'],
'dense_dim': 13,
'device_id': 0,
'device_target': 'Ascend',
'do_eval': 'True',
'enable_modelarts': False,
'enable_profiling': False,
'epsilon': 5e-08,
'eval_callback': True,
'eval_file_name': './auc.log',
'file_format': 'AIR',
'file_name': 'deepfm',
'init_args': [-0.01, 0.01],
'keep_checkpoint_max': 50,
'keep_prob': 0.9,
'l2_coef': 8e-05,
'label_path': '',
'learning_rate': 0.0005,
'load_path': '/cache/checkpoint_path',
'loss_callback': True,
'loss_file_name': './loss.log',
'loss_scale': 1024.0,
'output_path': '/cache/train',
'result_path': './preprocess_Result',
'save_checkpoint': True,
'save_checkpoint_steps': 1,
'skip_id_convert': 0,
'slot_dim': 26,
'test_num_of_parts': 3,
'threshold': 100,
'train_epochs': 5,
'train_line_count': 45840617,
'train_num_of_parts': 21,
'train_url': '',
'weight_bias_init': ['normal', 'normal']}
Please check the above information for the configurations

2.2.1 开始训练

python train.py 
  --dataset_path='train' 
  --ckpt_path='./checkpoint' 
  --eval_file_name='auc.log' 
  --loss_file_name='loss.log' 
  --device_target=Ascend 
  --do_eval=True > ms_log/output.log 2>&1 &

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-Hb2BCiNx-1644501708766)(C:%5CUsers%5C25122%5CAppData%5CRoaming%5CTypora%5Ctypora-user-images%5Cimage-20220206210219019.png)]

模型评估

python eval.py 
  --dataset_path='train' 
  --checkpoint_path='./checkpoint/deepfm-5_2582.ckpt' 
  --device_target=Ascend > ms_log/eval_output.log 2>&1 &
OR
bash scripts/run_eval.sh 0 Ascend /dataset_path /checkpoint_path/deepfm.ckpt

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-SRtB7qrq-1644501708767)(C:%5CUsers%5C25122%5CAppData%5CRoaming%5CTypora%5Ctypora-user-images%5Cimage-20220206210320733.png)]

导出MindIR

python export.py --ckpt_file ./checkpoint/deepfm-5_2582.ckpt --file_name deepfm_kewei --file_format MINDIR
cd scripts
bash run_infer_310.sh ../mindir ../train n 0

image-20220206211300678

image-20220206211318843

模型在notebook调通之后,我们就可以在modelarts部署deepfm的算法了。

image-20220207175145712

3。发布算法

我已将算法发布到AI Gallery,供大家训练使用。

deepfm模型算法 (huaweicloud.com)

最后

以上就是自信百褶裙为你收集整理的MindSpore入门--跑通DeepFM模型训练经验MindSpore入门–跑通DeepFM模型A Practice of MindSpore – DeepFM的全部内容,希望文章能够帮你解决MindSpore入门--跑通DeepFM模型训练经验MindSpore入门–跑通DeepFM模型A Practice of MindSpore – DeepFM所遇到的程序开发问题。

如果觉得靠谱客网站的内容还不错,欢迎将靠谱客网站推荐给程序员好友。

本图文内容来源于网友提供,作为学习参考使用,或来自网络收集整理,版权属于原作者所有。
点赞(62)

评论列表共有 0 条评论

立即
投稿
返回
顶部