我是靠谱客的博主 微笑便当,最近开发中收集的这篇文章主要介绍Xception总结,觉得挺不错的,现在分享给大家,希望可以做个参考。

概述

2017_Xception

图:

img

网络描述:

Xception是谷歌公司继Inception后,提出的InceptionV3的一种改进模型,其改进的主要内容为采用depthwise separable convolution来替换原来Inception v3中的多尺寸卷积核特征响应操作。
首先要讲一下什么是depthwise separable convolution:对于一个卷积点而言,假设有一个3×3大小的卷积层,其输入通道为16、输出通道为32。具体为,32个3×3大小的卷积核会遍历16个通道中的每个数据,最后可得到所需的32个输出通道,所需参数为16×32×3×3=4608个。应用深度可分离卷积,用16个3×3大小的卷积核分别遍历16通道的数据,得到了16个特征图谱。在融合操作之前,接着用32个1×1大小的卷积核遍历这16个特征图谱,所需参数为16×3×3+16×32×1×1=656个。
可以看出来depthwise separable convolution可以减少模型的参数。

通俗地理解就是卷积核厚度只有一层,然后在输入张量上一层一层地滑动,所以一个卷积核就对应了一个输出通道,当卷积完成后,在利用1x1的卷积调整厚度。

==不过Xception模型中的depthwise separable convolution和普通的不太一样,普通的depthwise separable convolution是先进行3x3操作再进行1x1操作(就好像mobileNet中的一样),而Xception模型中则是先进行1x1操作然后再进行3x3操作,中间为了保证数据不被破坏,没有添加relu层,而mobileNet添加了relu层。==在建立模型的时候,可以使用Keras中的SeparableConv2D层建立相应的功能。
在这里插入图片描述

对于Xception模型而言,其一共可以分为3个flow,分别是Entry flow、Middle flow、Exit flow;分为14个block,其中Entry flow中有4个、Middle flow中有8个、Exit flow中有2个。具体结构如下:
在这里插入图片描述

特点,优点:

(1)在Inception v3的基础上,把Inception模块替换为深度可分离卷积(此处的可分离卷积与mobilnet顺序颠倒,是先进行pointwise conv后进行depthwise conv),然后结合ResNet的跳跃连接,提出了Xception。

(2)Xception 在 ImageNet 上,比 Inception-v3 的准确率稍高, 同时参数量有所下降,在 Xception 中加入的类似 ResNet 的残差连接机制也显著加快了Xception的收敛过程并获得了显著更高的准确率。

(3)潜在的问题是,虽然 Depthwise Separable Convolution 可以带来准确率的提升或是理论计算量的大幅下降,但由于其计算过程较为零散,现有的卷积神经网络实现中它的效率都不够高,例如本文中 Xception 的理论计算量是远小于Inception-v3的,但其训练时的迭代速度反而更慢一些

代码:

keras实现:
def Xception(input_shape = [299,299,3],classes=1000):


    img_input = Input(shape=input_shape)

    #--------------------------#
    # Entry flow
    #--------------------------#
    #--------------------#
    # block1
    #--------------------#
    # 299,299,3 -> 149,149,64
    x = Conv2D(32, (3, 3), strides=(2, 2), use_bias=False, name='block1_conv1')(img_input)
    x = BatchNormalization(name='block1_conv1_bn')(x)
    x = Activation('relu', name='block1_conv1_act')(x)
    x = Conv2D(64, (3, 3), use_bias=False, name='block1_conv2')(x)
    x = BatchNormalization(name='block1_conv2_bn')(x)
    x = Activation('relu', name='block1_conv2_act')(x)

    #--------------------#
    # block2
    #--------------------#
    # 149,149,64 -> 75,75,128
    residual = Conv2D(128, (1, 1), strides=(2, 2), padding='same', use_bias=False)(x)
    residual = BatchNormalization()(residual)

    x = SeparableConv2D(128, (3, 3), padding='same', use_bias=False, name='block2_sepconv1')(x)
    x = BatchNormalization(name='block2_sepconv1_bn')(x)
    x = Activation('relu', name='block2_sepconv2_act')(x)
    x = SeparableConv2D(128, (3, 3), padding='same', use_bias=False, name='block2_sepconv2')(x)
    x = BatchNormalization(name='block2_sepconv2_bn')(x)

    x = MaxPooling2D((3, 3), strides=(2, 2), padding='same', name='block2_pool')(x)
    x = layers.add([x, residual])

    #--------------------#
    # block3
    #--------------------#
    # 75,75,128 -> 38,38,256
    residual = Conv2D(256, (1, 1), strides=(2, 2),padding='same', use_bias=False)(x)
    residual = BatchNormalization()(residual)

    x = Activation('relu', name='block3_sepconv1_act')(x)
    x = SeparableConv2D(256, (3, 3), padding='same', use_bias=False, name='block3_sepconv1')(x)
    x = BatchNormalization(name='block3_sepconv1_bn')(x)
    x = Activation('relu', name='block3_sepconv2_act')(x)
    x = SeparableConv2D(256, (3, 3), padding='same', use_bias=False, name='block3_sepconv2')(x)
    x = BatchNormalization(name='block3_sepconv2_bn')(x)

    x = MaxPooling2D((3, 3), strides=(2, 2), padding='same', name='block3_pool')(x)
    x = layers.add([x, residual])

    #--------------------#
    # block4
    #--------------------#
    # 38,38,256 -> 19,19,728
    residual = Conv2D(728, (1, 1), strides=(2, 2),padding='same', use_bias=False)(x)
    residual = BatchNormalization()(residual)

    x = Activation('relu', name='block4_sepconv1_act')(x)
    x = SeparableConv2D(728, (3, 3), padding='same', use_bias=False, name='block4_sepconv1')(x)
    x = BatchNormalization(name='block4_sepconv1_bn')(x)
    x = Activation('relu', name='block4_sepconv2_act')(x)
    x = SeparableConv2D(728, (3, 3), padding='same', use_bias=False, name='block4_sepconv2')(x)
    x = BatchNormalization(name='block4_sepconv2_bn')(x)

    x = MaxPooling2D((3, 3), strides=(2, 2), padding='same', name='block4_pool')(x)
    x = layers.add([x, residual])

    #--------------------------#
    # Middle flow
    #--------------------------#
    #--------------------#
    # block5--block12
    #--------------------#
    # 19,19,728 -> 19,19,728
    for i in range(8):
        residual = x
        prefix = 'block' + str(i + 5)

        x = Activation('relu', name=prefix + '_sepconv1_act')(x)
        x = SeparableConv2D(728, (3, 3), padding='same', use_bias=False, name=prefix + '_sepconv1')(x)
        x = BatchNormalization(name=prefix + '_sepconv1_bn')(x)
        x = Activation('relu', name=prefix + '_sepconv2_act')(x)
        x = SeparableConv2D(728, (3, 3), padding='same', use_bias=False, name=prefix + '_sepconv2')(x)
        x = BatchNormalization(name=prefix + '_sepconv2_bn')(x)
        x = Activation('relu', name=prefix + '_sepconv3_act')(x)
        x = SeparableConv2D(728, (3, 3), padding='same', use_bias=False, name=prefix + '_sepconv3')(x)
        x = BatchNormalization(name=prefix + '_sepconv3_bn')(x)

        x = layers.add([x, residual])

    #--------------------------#
    # Exit flow
    #--------------------------#
    #--------------------#
    # block13
    #--------------------#
    # 19,19,728 -> 10,10,1024
    residual = Conv2D(1024, (1, 1), strides=(2, 2),
                      padding='same', use_bias=False)(x)
    residual = BatchNormalization()(residual)

    x = Activation('relu', name='block13_sepconv1_act')(x)
    x = SeparableConv2D(728, (3, 3), padding='same', use_bias=False, name='block13_sepconv1')(x)
    x = BatchNormalization(name='block13_sepconv1_bn')(x)
    x = Activation('relu', name='block13_sepconv2_act')(x)
    x = SeparableConv2D(1024, (3, 3), padding='same', use_bias=False, name='block13_sepconv2')(x)
    x = BatchNormalization(name='block13_sepconv2_bn')(x)

    x = MaxPooling2D((3, 3), strides=(2, 2), padding='same', name='block13_pool')(x)
    x = layers.add([x, residual])

    #--------------------#
    # block14
    #--------------------#
    # 10,10,1024 -> 10,10,2048
    x = SeparableConv2D(1536, (3, 3), padding='same', use_bias=False, name='block14_sepconv1')(x)
    x = BatchNormalization(name='block14_sepconv1_bn')(x)
    x = Activation('relu', name='block14_sepconv1_act')(x)

    x = SeparableConv2D(2048, (3, 3), padding='same', use_bias=False, name='block14_sepconv2')(x)
    x = BatchNormalization(name='block14_sepconv2_bn')(x)
    x = Activation('relu', name='block14_sepconv2_act')(x)

    x = GlobalAveragePooling2D(name='avg_pool')(x)
    x = Dense(classes, activation='softmax', name='predictions')(x)

    inputs = img_input

    model = Model(inputs, x, name='xception')

    model.load_weights("xception_weights_tf_dim_ordering_tf_kernels.h5")

    return model

最后

以上就是微笑便当为你收集整理的Xception总结的全部内容,希望文章能够帮你解决Xception总结所遇到的程序开发问题。

如果觉得靠谱客网站的内容还不错,欢迎将靠谱客网站推荐给程序员好友。

本图文内容来源于网友提供,作为学习参考使用,或来自网络收集整理,版权属于原作者所有。
点赞(38)

评论列表共有 0 条评论

立即
投稿
返回
顶部