我是靠谱客的博主 真实芝麻,最近开发中收集的这篇文章主要介绍6个有趣的Python实战小项目,赶紧拿去试试吧前言实战项目一:分析唐诗的作者是李白还是杜甫实战项目二:自动写检讨书实战项目三: 屏幕录相机,抓屏软件实战项目四:听两个聊天机器人互相聊天实战项目五:彩票随机生成35选7实战项目六:制作Gif动图,觉得挺不错的,现在分享给大家,希望可以做个参考。
概述
目录
前言
实战项目一:分析唐诗的作者是李白还是杜甫
实战项目二:自动写检讨书
实战项目三: 屏幕录相机,抓屏软件
实战项目四:听两个聊天机器人互相聊天
实战项目五:彩票随机生成35选7
实战项目六:制作Gif动图
前言
Python是一种极具可读性和通用性的编程语言。Python这个名字的灵感来自于英国喜剧团体Monty Python,它的开发团队有一个重要的基础目标,就是使语言使用起来很有趣。Python易于设置,并且是用相对直接的风格来编写,对错误会提供即时反馈,对初学者而言是个很好的选择。
作为一个语法简洁、有着丰富的第三方库的编程语言,Python 上手极为简单,短时间内就可以让你编写出能够解决实际问题的小程序,甚至去面试初级 Python 工程师的职位。
不过,如果要写出一些更复杂的应用,或者想从事数据分析、机器学习以及 Web 开发等领域的工作,就需要进一步的学习了。
那么,什么样的学习方法比较高效呢?
我认为,最好的方式就是在实战中学习。
你可以从一个简单的小项目开始,然后不断去完善这个项目的功能,随着项目需求越来越复杂,你需要学习的东西也就越来越多,当项目完成后,你的开发水平自然也就能更上一层楼。
接下来,和大家介绍下Python练手的实战项目。
实战项目一:分析唐诗的作者是李白还是杜甫
import jieba
from nltk.classify import NaiveBayesClassifier
# 需要提前把李白的诗收集一下,放在libai.txt文本中。
text1 = open(r"libai.txt", "rb").read()
list1 = jieba.cut(text1)
result1 = " ".join(list1)
# 需要提前把杜甫的诗收集一下,放在dufu.txt文本中。
text2 = open(r"dufu.txt", "rb").read()
list2 = jieba.cut(text2)
result2 = " ".join(list2)
# 数据准备
libai = result1
dufu = result2
# 特征提取
def word_feats(words):
return dict([(word, True) for word in words])
libai_features = [(word_feats(lb), 'lb') for lb in libai]
dufu_features = [(word_feats(df), 'df') for df in dufu]
train_set = libai_features + dufu_features
# 训练决策
classifier = NaiveBayesClassifier.train(train_set)
# 分析测试
sentence = input("请输入一句你喜欢的诗:")
print("n")
seg_list = jieba.cut(sentence)
result1 = " ".join(seg_list)
words = result1.split(" ")
# 统计结果
lb = 0
df = 0
for word in words:
classResult = classifier.classify(word_feats(word))
if classResult == 'lb':
lb = lb + 1
if classResult == 'df':
df = df + 1
# 呈现比例
x = float(str(float(lb) / len(words)))
y = float(str(float(df) / len(words)))
print('李白的可能性:%.2f%%' % (x * 100))
print('杜甫的可能性:%.2f%%' % (y * 100))
实战项目二:自动写检讨书
import random
import xlrd
ExcelFile = xlrd.open_workbook(r'test.xlsx')
sheet = ExcelFile.sheet_by_name('Sheet1')
i = []
x = input("请输入具体事件:")
y = int(input("老师要求的字数:"))
while len(str(i)) < y * 1.2:
s = random.randint(1, 60)
rows = sheet.row_values(s)
i.append(*rows)
print(" "*8+"检讨书"+"n"+"老师:")
print("我不应该" + str(x)+",", *i)
print("再次请老师原谅!")
'''
以下是样稿:
请输入具体事件:谈恋爱
老师要求的字数:200
检讨书
老师:
我不应该谈恋爱, 学校一开学就三令五申,一再强调校规校纪,提醒学生不要违反校规,可我却没有把学校和老师的话放在心上,没有重视老师说的话,没有重视学校颁布的重要事项,当成了耳旁风,这些都是不应该的。同时也真诚地希望老师能继续关心和支持我,并却对我的问题酌情处理。 无论在学习还是在别的方面我都会用校规来严格要求自己,我会把握这次机会。 但事实证明,仅仅是热情投入、刻苦努力、钻研学业是不够的,还要有清醒的政治头脑、大局意识和纪律观念,否则就会在学习上迷失方向,使国家和学校受损失。
再次请老师原谅!
实战项目三: 屏幕录相机,抓屏软件
from time import sleep
from PIL import ImageGrab
m = int(input("请输入想抓屏几分钟:"))
m = m * 60
n = 1
while n < m:
sleep(0.02)
im = ImageGrab.grab()
local = (r"%s.jpg" % (n))
im.save(local, 'jpeg')
n = n + 1
实战项目四:听两个聊天机器人互相聊天
from time import sleep
import requests
s = input("请主人输入话题:")
while True:
resp = requests.post("http://www.tuling123.com/openapi/api",data={"key":"4fede3c4384846b9a7d0456a5e1e2943", "info": s, })
resp = resp.json()
sleep(1)
print('天天:', resp['text'])
s = resp['text']
resp = requests.get("http://api.qingyunke.com/api.php", {'key': 'free', 'appid':0, 'msg': s})
resp.encoding = 'utf8'
resp = resp.json()
sleep(1)
print('明明:', resp['content'])
#网上还有一个据说智商比较高的小i机器人,用爬虫的功能来实现一下:
import urllib.request
import re
while True:
x = input("主人:")
x = urllib.parse.quote(x)
link = urllib.request.urlopen(
"http://nlp.xiaoi.com/robot/webrobot?&callback=__webrobot_processMsg&data=%7B%22sessionId%22%3A%22ff725c236e5245a3ac825b2dd88a7501%22%2C%22robotId%22%3A%22webbot%22%2C%22userId%22%3A%227cd29df3450745fbbdcf1a462e6c58e6%22%2C%22body%22%3A%7B%22content%22%3A%22" + x + "%22%7D%2C%22type%22%3A%22txt%22%7D")
html_doc = link.read().decode()
reply_list = re.findall(r'"content":"(.+?)\r\n"', html_doc)
print("小i:" + reply_list[-1])
实战项目五:彩票随机生成35选7
import random
temp = [i + 1 for i in range(35)]
random.shuffle(temp)
i = 0
list = []
while i < 7:
list.append(temp[i])
i = i + 1
list.sort()
print('