MapReduce
1.了解inputSplit
转载于:http://blog.csdn.net/dr_guo/article/details/51150278
输入分片(Input Split):在进行map计算之前,mapreduce会根据输入文件计算输入分片(input split),每个输入分片(input split)针对一个map任务,输入分片(input split)存储的并非数据本身,而是一个分片长度和一个记录数据的位置的数组。
Hadoop 2.x默认的block大小是128MB,Hadoop 1.x默认的block大小是64MB,可以在hdfs-site.xml中设置dfs.block.size,注意单位是byte。
分片大小范围可以在mapred-site.xml中设置,mapred.min.split.size mapred.max.split.size,minSplitSize大小默认为1B,maxSplitSize大小默认为Long.MAX_VALUE = 9223372036854775807
2.处理过程map–>[partitioner,combiner,shuffle]->reduce
转载于:http://blog.jobbole.com/84089/
1. map阶段:就是程序员编写好的map函数了,因此map函数效率相对好控制,而且一般map操作都是本地化操作也就是在数据存储节点上进行;
2.partitioner阶段:哪个key到哪个Reducer的分配过程,是由Partitioner规定的。
MapReduce的使用者通常会指定Reduce任务和Reduce任务输出文件的数量(R)。
用户在中间key上使用分区函数来对数据进行分区,之后在输入到后续任务执行进程。一个默认的分区函数式使用hash方法(比如常见的:hash(key) mod R)进行分区。hash方法能够产生非常平衡的分区。
3.combiner阶段:combiner阶段是程序员可以选择的,combiner其实也是一种reduce操作,因此我们看见WordCount类里是用reduce进行加载的。Combiner是一个本地化的reduce操作,它是map运算的后续操作,主要是在map计算出中间文件前做一个简单的合并重复key值的操作,例如我们对文件里的单词频率做统计,map计算时候如果碰到一个hadoop的单词就会记录为1,但是这篇文章里hadoop可能会出现n多次,那么map输出文件冗余就会很多,因此在reduce计算前对相同的key做一个合并操作,那么文件会变小,这样就提高了宽带的传输效率,毕竟hadoop计算力宽带资源往往是计算的瓶颈也是最为宝贵的资源,但是combiner操作是有风险的,使用它的原则是combiner的输入不会影响到reduce计算的最终输入,例如:如果计算只是求总数,最大值,最小值可以使用combiner,但是做平均值计算使用combiner的话,最终的reduce计算结果就会出错。
4.shuffle阶段:将map的输出作为reduce的输入的过程就是shuffle了,这个是mapreduce优化的重点地方。这里我不讲怎么优化shuffle阶段,讲讲shuffle阶段的原理,因为大部分的书籍里都没讲清楚shuffle阶段。Shuffle一开始就是map阶段做输出操作,一般mapreduce计算的都是海量数据,map输出时候不可能把所有文件都放到内存操作,因此map写入磁盘的过程十分的复杂,更何况map输出时候要对结果进行排序,内存开销是很大的,map在做输出时候会在内存里开启一个环形内存缓冲区,这个缓冲区专门用来输出的,默认大小是100mb,并且在配置文件里为这个缓冲区设定了一个阀值,默认是0.80(这个大小和阀值都是可以在配置文件里进行配置的),同时map还会为输出操作启动一个守护线程,如果缓冲区的内存达到了阀值的80%时候,这个守护线程就会把内容写到磁盘上,这个过程叫spill,另外的20%内存可以继续写入要写进磁盘的数据,写入磁盘和写入内存操作是互不干扰的,如果缓存区被撑满了,那么map就会阻塞写入内存的操作,让写入磁盘操作完成后再继续执行写入内存操作,前面我讲到写入磁盘前会有个排序操作,这个是在写入磁盘操作时候进行,不是在写入内存时候进行的,如果我们定义了combiner函数,那么排序前还会执行combiner操作。
每次spill操作也就是写入磁盘操作时候就会写一个溢出文件,也就是说在做map输出有几次spill就会产生多少个溢出文件,等map输出全部做完后,map会合并这些输出文件。这个过程里还会有一个Partitioner操作,对于这个操作很多人都很迷糊,其实Partitioner操作和map阶段的输入分片(Input split)很像,一个Partitioner对应一个reduce作业,如果我们mapreduce操作只有一个reduce操作,那么Partitioner就只有一个,如果我们有多个reduce操作,那么Partitioner对应的就会有多个,Partitioner因此就是reduce的输入分片,这个程序员可以编程控制,主要是根据实际key和value的值,根据实际业务类型或者为了更好的reduce负载均衡要求进行,这是提高reduce效率的一个关键所在。到了reduce阶段就是合并map输出文件了,Partitioner会找到对应的map输出文件,然后进行复制操作,复制操作时reduce会开启几个复制线程,这些线程默认个数是5个,程序员也可以在配置文件更改复制线程的个数,这个复制过程和map写入磁盘过程类似,也有阀值和内存大小,阀值一样可以在配置文件里配置,而内存大小是直接使用reduce的tasktracker的内存大小,复制时候reduce还会进行排序操作和合并文件操作,这些操作完了就会进行reduce计算了。
5. reduce阶段:和map函数一样也是程序员编写的,最终结果是存储在hdfs上的。
3.MapReduce排序
任务:
数据文件中,如果按照第一列升序排列,
当第一列相同时,第二列升序排列
数据文件:
3 3
3 2
3 1
2 2
2 1
1 1
运行结果为:
1 1
2 1
2 2
3 1
3 2
3 3
在Hadoop默认的排序算法中,只会针对key值进行排序,所以需要自定义排序。
1.封装一个自定义类型作为key的新类型:将第一列与第二列都作为key
定义:
public interface WritableComparable<T> extends Writable, Comparable<T> {
}
自定义类型MyNewKey实现了WritableComparable的接口,
该接口中有一个compareTo()方法,当对key进行比较时会调用该方法,而我们将其改为了我们自己定义的比较规则,从而实现我们想要的效果
private static class MyNewKey implements WritableComparable<MyNewKey> {
long firstNum;
long secondNum;
public MyNewKey() {
}
public MyNewKey(long first, long second) {
firstNum = first;
secondNum = second;
}
@Override
public void write(DataOutput out) throws IOException {
out.writeLong(firstNum);
out.writeLong(secondNum);
}
@Override
public void readFields(DataInput in) throws IOException {
firstNum = in.readLong();
secondNum = in.readLong();
}
/*
* 当key进行排序时会调用以下这个compreTo方法
*/
@Override
public int compareTo(MyNewKey anotherKey) {
long min = firstNum - anotherKey.firstNum;
if (min != 0) {
// 说明第一列不相等,则返回两数之间小的数
return (int) min;
} else {
return (int) (secondNum - anotherKey.secondNum);
}
}
}
2.改写MapMapper,MapReduce方法函数
public static class MyMapper extends
Mapper<LongWritable, Text, MyNewKey, LongWritable> {
protected void map(LongWritable key,Text value,
Mapper<LongWritable, Text, MyNewKey, LongWritable>.Context context)
throws java.io.IOException, InterruptedException {
String[] spilted = value.toString().split("t");
long firstNum = Long.parseLong(spilted[0]);
long secondNum = Long.parseLong(spilted[1]);
// 使用新的类型作为key参与排序
MyNewKey newKey = new MyNewKey(firstNum, secondNum);
context.write(newKey, new LongWritable(secondNum));
};
}
//------------------------
public static class MyReducer extends
Reducer<MyNewKey, LongWritable, LongWritable, LongWritable> {
protected void reduce(MyNewKey key,
java.lang.Iterable<LongWritable> values,
Reducer<MyNewKey, LongWritable, LongWritable, LongWritable>.Context context)
throws java.io.IOException, InterruptedException {
context.write(new LongWritable(key.firstNum), new LongWritable(
key.secondNum));
};
}
最后
以上就是能干大碗最近收集整理的关于hadoop学习之MapReduce笔记的全部内容,更多相关hadoop学习之MapReduce笔记内容请搜索靠谱客的其他文章。
发表评论 取消回复