我是靠谱客的博主 英勇音响,最近开发中收集的这篇文章主要介绍MapReduce编程模型详解,觉得挺不错的,现在分享给大家,希望可以做个参考。

概述

1.1 MapReduce是什么

  Hadoop MapReduce是一个软件框架,基于该框架能够容易地编写应用程序,这些应用程序能够运行在由上千个商用机器组成的大集群上,并以一种可靠的,具有容错能力的方式并行地处理上TB级别的海量数据集。这个定义里面有着这些关键词,

一是软件框架,二是并行处理,三是可靠且容错,四是大规模集群,五是海量数据集。

 

1.2 MapReduce做什么

 

  MapReduce擅长处理大数据,它为什么具有这种能力呢?这可由MapReduce的设计思想发觉。MapReduce的思想就是“分而治之”。

1)Mapper负责“分”,即把复杂的任务分解为若干个“简单的任务”来处理。“简单的任务”包含三层含义:

一是数据或计算的规模相对原任务要大大缩小;二是就近计算原则,即任务会分配到存放着所需数据的节点上进行计算;三是这些小任务可以并行计算,彼此间几乎没有依赖关系。

  (2)Reducer负责对map阶段的结果进行汇总。至于需要多少个Reducer,用户可以根据具体问题,通过在mapred-site.xml配置文件里设置参数mapred.reduce.tasks的值,缺省值为1。

一个比较形象的语言解释MapReduce:  

我们要数图书馆中的所有书。你数1号书架,我数2号书架。这就是“Map”。我们人越多,数书就更快。

现在我们到一起,把所有人的统计数加在一起。这就是“Reduce”。

1. 3. MapReduce运行流程

这里写图片描述

 

map任务处理:
读取输入文件内容,解析成key、value对。对输入文件的每一行,解析成key、value对。每一个键值对调用一次map函数。

写自己的逻辑,对输入的key、value处理,转换成新的key、value输出。

对输出的key、value进行分区。

对不同分区的数据,按照key进行排序、分组。相同key的value放到一个集合中。

(可选)分组后的数据进行归约。


reduce任务处理:
对多个map任务的输出,按照不同的分区,通过网络copy到不同的reduce节点。

对多个map任务的输出进行合并、排序。写reduce函数自己的逻辑,对输入的key、value处理,转换成新的key、value输出。

把reduce的输出保存到文件中。

3.讲述一下mapreduce的流程(shuffle的sort,partitions,group)

首先是 Mapreduce经过SplitInput 输入分片 决定map的个数在用Record记录 key value。然后分为以下三个流程:

Map:

输入  key(long类型偏移量)  value(Text一行字符串)

输出  key value

Shuffle:、

   合并(merge)map输出时先输出到环形内存,当内存使用率达到60%时开始溢出写入到文件,溢出文件都是小文件,所以就要合并他们,在这个构成中就会排序,根据key值比较排序

   排序(sort)如果你自定义了key的数据类型要求你的类一定是WriteableCompartor的子类,不想继承WriteableCompartor,至少实现Writeable,这时你就必须在job上设置排序比较器job.setSortCmpartorClass(MyCompartor.class);而MyCompartor.class必须继承RawCompartor的类或子类

   分区(partition)会根据map输出的结果分成几个文件为reduce准备,有几个reducetask就分成几个文件,在job上设置分区器job.setPartitionerClass(MyPartition.class)Myrtition.class要继承Partitioner这个类

   分组(group)分区时会调用分组器,把同一分区中的相同key的数据对应的value制作成一个iterable,并且会在sort。在job上设置分组器。Job.setGroupCompartorClass(MyGroup.class)MyGroup.class必须继承RawCompartor的类跟子类

上面的结果储存到本地文件中,而不是hdfs上

上面只要有完成结果,reduce就开始复制上面的结果,通过http方式

Reduce

  输入key时map输出时的key value是分组器分的iterable

  输出 key value

  输出结果保存在hdfs上而不是本地文件中

  MapReduce的执行步骤:

1、Map任务处理

1.1 读取HDFS中的文件。每一行解析成一个<k,v>。每一个键值对调用一次map函数。                <0,hello you>   <10,hello me>                    

1.2 覆盖map(),接收1.1产生的<k,v>,进行处理,转换为新的<k,v>输出。          <hello,1> <you,1> <hello,1> <me,1>

1.3 对1.2输出的<k,v>进行分区。默认分为一个区。详见《Partitioner》

1.4 对不同分区中的数据进行排序(按照k)、分组。分组指的是相同key的value放到一个集合中。 排序后:<hello,1> <hello,1> <me,1> <you,1>  分组后:<hello,{1,1}><me,{1}><you,{1}>

1.5 (可选)对分组后的数据进行归约。详见《Combiner》

2、Reduce任务处理

2.1 多个map任务的输出,按照不同的分区,通过网络copy到不同的reduce节点上。(shuffle)详见《shuffle过程分析》

2.2 对多个map的输出进行合并、排序。覆盖reduce函数,接收的是分组后的数据,实现自己的业务逻辑, <hello,2> <me,1> <you,1>

    处理后,产生新的<k,v>输出。

2.3 对reduce输出的<k,v>写到HDFS中。

MapReduce工作原理图文详解

1.MapReduce作业运行流程
2.Map、Reduce任务中Shuffle和排序的过程 

正文: 

1.MapReduce作业运行流程

流程分析:


1.在客户端启动一个作业。


2.向JobTracker请求一个Job ID。


3.将运行作业所需要的资源文件复制到HDFS上,包括MapReduce程序打包的JAR文件、配置文件和客户端计算所得的输入划分信息。这些文件都存放在JobTracker专门为该作业创建的文件夹中。文件夹名为该作业的Job ID。JAR文件默认会有10个副本(mapred.submit.replication属性控制);输入划分信息告诉了JobTracker应该为这个作业启动多少个map任务等信息。


4.JobTracker接收到作业后,将其放在一个作业队列里,等待作业调度器对其进行调度(这里是不是很像微机中的进程调度呢,呵呵),当作业调度器根据自己的调度算法调度到该作业时,会根据输入划分信息为每个划分创建一个map任务,并将map任务分配给TaskTracker执行。对于map和reduce任务,TaskTracker根据主机核的数量和内存的大小有固定数量的map槽和reduce槽。这里需要强调的是:map任务不是随随便便地分配给某个TaskTracker的,这里有个概念叫:数据本地化(Data-Local)。意思是:将map任务分配给含有该map处理的数据块的TaskTracker上,同时将程序JAR包复制到该TaskTracker上来运行,这叫“运算移动,数据不移动”。而分配reduce任务时并不考虑数据本地化。


5.TaskTracker每隔一段时间会给JobTracker发送一个心跳,告诉JobTracker它依然在运行,同时心跳中还携带着很多的信息,比如当前map任务完成的进度等信息。当JobTracker收到作业的最后一个任务完成信息时,便把该作业设置成“成功”。当JobClient查询状态时,它将得知任务已完成,便显示一条消息给用户。

以上是在客户端、JobTracker、TaskTracker的层次来分析MapReduce的工作原理的,下面我们再细致一点,从map任务和reduce任务的层次来分析分析吧。

2.Map、Reduce任务中Shuffle和排序的过程


同样贴出我在visio中画出的流程示意图:

 

 

流程分析: 

Map端: 

1.每个输入分片会让一个map任务来处理,默认情况下,以HDFS的一个块的大小(默认为64M)为一个分片,当然我们也可以设置块的大小。map输出的结果会暂且放在一个环形内存缓冲区中(该缓冲区的大小默认为100M,由io.sort.mb属性控制),当该缓冲区快要溢出时(默认为缓冲区大小的80%,由io.sort.spill.percent属性控制),会在本地文件系统中创建一个溢出文件,将该缓冲区中的数据写入这个文件。

2.在写入磁盘之前,线程首先根据reduce任务的数目将数据划分为相同数目的分区,也就是一个reduce任务对应一个分区的数据。这样做是为了避免有些reduce任务分配到大量数据,而有些reduce任务却分到很少数据,甚至没有分到数据的尴尬局面。其实分区就是对数据进行hash的过程。然后对每个分区中的数据进行排序,如果此时设置了Combiner,将排序后的结果进行Combia操作,这样做的目的是让尽可能少的数据写入到磁盘。

3.当map任务输出最后一个记录时,可能会有很多的溢出文件,这时需要将这些文件合并。合并的过程中会不断地进行排序和combia操作,目的有两个:1.尽量减少每次写入磁盘的数据量;2.尽量减少下一复制阶段网络传输的数据量。最后合并成了一个已分区且已排序的文件。为了减少网络传输的数据量,这里可以将数据压缩,只要将mapred.compress.map.out设置为true就可以了。

4.将分区中的数据拷贝给相对应的reduce任务。有人可能会问:分区中的数据怎么知道它对应的reduce是哪个呢?其实map任务一直和其父TaskTracker保持联系,而TaskTracker又一直和JobTracker保持心跳。所以JobTracker中保存了整个集群中的宏观信息。只要reduce任务向JobTracker获取对应的map输出位置就ok了哦。

到这里,map端就分析完了。那到底什么是Shuffle呢?Shuffle的中文意思是“洗牌”,如果我们这样看:一个map产生的数据,结果通过hash过程分区却分配给了不同的reduce任务,是不是一个对数据洗牌的过程呢?呵呵。

Reduce端: 

1.Reduce会接收到不同map任务传来的数据,并且每个map传来的数据都是有序的。如果reduce端接受的数据量相当小,则直接存储在内存中(缓冲区大小由mapred.job.shuffle.input.buffer.percent属性控制,表示用作此用途的堆空间的百分比),如果数据量超过了该缓冲区大小的一定比例(由mapred.job.shuffle.merge.percent决定),则对数据合并后溢写到磁盘中。

2.随着溢写文件的增多,后台线程会将它们合并成一个更大的有序的文件,这样做是为了给后面的合并节省时间。其实不管在map端还是reduce端,MapReduce都是反复地执行排序,合并操作,现在终于明白了有些人为什么会说:排序是hadoop的灵魂。

3.合并的过程中会产生许多的中间文件(写入磁盘了),但MapReduce会让写入磁盘的数据尽可能地少,并且最后一次合并的结果并没有写入磁盘,而是直接输入到reduce函数。

最后

以上就是英勇音响为你收集整理的MapReduce编程模型详解的全部内容,希望文章能够帮你解决MapReduce编程模型详解所遇到的程序开发问题。

如果觉得靠谱客网站的内容还不错,欢迎将靠谱客网站推荐给程序员好友。

本图文内容来源于网友提供,作为学习参考使用,或来自网络收集整理,版权属于原作者所有。
点赞(50)

评论列表共有 0 条评论

立即
投稿
返回
顶部