概述
# Use the validation set to tune the learning rate and regularization strength
from cs231n.classifiers.linear_classifier import LinearSVM
learning_rates = [1e-9, 1e-8, 1e-7]
regularization_strengths = [5e4, 5e5, 5e6]
results = {}
best_val = -1
best_svm = None
################################################################################
# TODO: #
# Use the validation set to set the learning rate and regularization strength. #
# This should be identical to the validation that you did for the SVM; save #
# the best trained classifer in best_svm. You might also want to play #
# with different numbers of bins in the color histogram. If you are careful #
# you should be able to get accuracy of near 0.44 on the validation set. #
################################################################################
for lr in learning_rates:
for reg in regularization_strengths:
svm = LinearSVM()
svm.train(X_train_feats, y_train, learning_rate=lr, reg=reg, num_iters=4000,
batch_size=200, verbose=False)
train_pre = svm.predict(X_train_feats)
train_acc = np.mean(train_pre == y_train)
val_pre = svm.predict(X_val_feats)
val_acc = np.mean(val_pre == y_val)
if val_acc > best_val:
best_val = val_acc
best_svm = svm
results[(lr,reg)] = train_acc,val_acc
################################################################################
# END OF YOUR CODE #
################################################################################
# Print out results.
for lr, reg in sorted(results):
train_accuracy, val_accuracy = results[(lr, reg)]
print('lr %e reg %e train accuracy: %f val accuracy: %f' % (
lr, reg, train_accuracy, val_accuracy))
print('best validation accuracy achieved during cross-validation: %f' % best_val)
提示准确率能接近0.44,然而我的实验结果只有0.422,至于test_accuracy为0.425
from cs231n.classifiers.neural_net import TwoLayerNet
input_dim = X_train_feats.shape[1]
hidden_dim = 500
num_classes = 10
net = TwoLayerNet(input_dim, hidden_dim, num_classes)
best_net = None
################################################################################
# TODO: Train a two-layer neural network on image features. You may want to #
# cross-validate various parameters as in previous sections. Store your best #
# model in the best_net variable. #
################################################################################
best_lr = 0
best_reg = 0
best_accuracy= 0
lr_base =0.01
lr_step =0.002
reg_base =0.005
reg_step =0.001
for lr_num in range(10):
for reg_num in range(10):
lr = lr_base + lr_num*lr_step
reg = reg_base + reg_num*reg_step
results = net.train(X_train_feats, y_train, X_val_feats, y_val,
num_iters=2000, batch_size=200,
learning_rate=lr, learning_rate_decay=0.95,
reg=reg, verbose=False)
train_accuracy = np.mean(net.predict(X_train_feats) == y_train)
val_accuracy = np.mean(net.predict(X_val_feats) == y_val)
print("lr:%f, reg:%f, train_accuracy:%f, val_accuracy:%f"%( lr, reg, train_accuracy,val_accuracy))
if val_accuracy > best_accuracy:
best_accuracy = val_accuracy
best_net = net
best_lr = lr
best_reg = reg
print("best model is:")
print("lr:%f, reg:%f, accuracy:%f"%(best_lr, best_reg, best_accuracy))
################################################################################
# END OF YOUR CODE #
################################################################################
我在这个实验中准确率为0.599,test_acc为0.547
最后
以上就是自然身影为你收集整理的cs231n assignment1 features作业的全部内容,希望文章能够帮你解决cs231n assignment1 features作业所遇到的程序开发问题。
如果觉得靠谱客网站的内容还不错,欢迎将靠谱客网站推荐给程序员好友。
本图文内容来源于网友提供,作为学习参考使用,或来自网络收集整理,版权属于原作者所有。
发表评论 取消回复