我是靠谱客的博主 踏实花瓣,这篇文章主要介绍CS231n——Assignment1-KNN,现在分享给大家,希望可以做个参考。

一、KNN


1.读取数据

复制代码
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
import numpy as np import random from cs231n.data_utils import load_CIFAR10 import matplotlib.pyplot as plt import os plt.rcParams['figure.figsize']=(10.0,8.0) plt.rcParams['image.interpolation']='nearest' plt.rcParams['image.cmap']='gray' #load the raw CIFAR-10 data os.chdir('E://Python//deep learning CS231n//assignment1') cifar10_dir='E://Python//deep learning CS231n//assignment1//cs231n//datasets' X_train,y_train,X_test,y_test=load_CIFAR10(cifar10_dir) print('Training data shape:',X_train.shape) print("Training labels shape:",y_train.shape) print('Test data shape:',X_test.shape) print('Test labels shape:',y_test.shape)

结果为

Training data shape: (50000, 32, 32, 3)
Training labels shape: (50000,)
Test data shape: (10000, 32, 32, 3)
Test labels shape: (10000,)


2.显示一些样本

enumerate()返回一个可迭代对象的枚举形式,如下例

返回0 plane/ 1 car/ 2 bird/......

复制代码
1
2
3
4
5
6
7
8
9
10
11
12
13
14
classes=['plane', 'car', 'bird', 'cat', 'deer', 'dog', 'frog', 'horse', 'ship', 'truck'] num_classes=len(classes) samples_per_class=7 for y,cls in enumerate(classes): idxs=np.flatnonzero(y_train==y)#记录y_train中等于y的索引值 idxs=np.random.choice(idxs,samples_per_class,replace=False)#选出7张图 for i,idx in enumerate(idxs): plt_idx=i* num_classes+y+1 plt.subplot(samples_per_class,num_classes,plt_idx) plt.imshow(X_train[idx].astype('uint8')) plt.axis('off') if i==0: plt.title(cls) plt.show()

3.调整数据集大小

复制代码
1
2
3
4
5
6
7
8
9
10
11
12
13
14
#调整数据集的大小 num_training=5000 mask=range(num_training) X_train=X_train[mask] y_train=y_train[mask] num_test=500 mask=range(num_test) X_test=X_test[mask] y_test=y_test[mask] #把所有图片变成一列 X_train=np.reshape(X_train,(X_train.shape[0],-1)) X_test=np.reshape(X_test,(X_test.shape[0],-1)) print (X_train.shape,X_test.shape)

现在X_train变成5000*3072

X_test变成了500*3072


4.KNN类的实现

计算距离用的是L2距离

  • np.argsort()函数返回的是数组值从小到大的索引值,我们需要将距离最小的k个图片挑出来,然后数它们所属的类的个数
  • np.bincount(x)函数给出了它的索引值在x中出现的次数,如a=np.array([1,1,2,3,4,6]), np.bincount(a)=[0(0的个数),2(1的个数),1,1,1,0,1]


复制代码
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
class KNearestNeighbor: # 首先是定义一个处理KNN的类 """ a kNN classifier with L2 distance """ def __init__(self): pass def train(self, X, y): """ Train the classifier. For k-nearest neighbors this is just memorizing the training data. Inputs: - X: A numpy array of shape (num_train, D) containing the training data consisting of num_train samples each of dimension D. - y: A numpy array of shape (N,) containing the training labels, where y[i] is the label for X[i]. """ self.X_train = X self.y_train = y def predict(self, X, k=1, num_loops=0): """ Predict labels for test data using this classifier. Inputs: - X: A numpy array of shape (num_test, D) containing test data consisting of num_test samples each of dimension D. - k: The number of nearest neighbors that vote for the predicted labels. - num_loops: Determines which implementation to use to compute distances between training points and testing points. Returns: - y: A numpy array of shape (num_test,) containing predicted labels for the test data, where y[i] is the predicted label for the test point X[i]. """ if num_loops == 0: dists = self.compute_distances_no_loops(X) elif num_loops == 1: dists = self.compute_distances_one_loop(X) elif num_loops == 2: dists = self.compute_distances_two_loops(X) else: raise ValueError('Invalid value %d for num_loops' % num_loops) return self.predict_labels(dists, k=k) def compute_distances_two_loops(self, X): """ Compute the distance between each test point in X and each training point in self.X_train using a nested loop over both the training data and the test data. Inputs: - X: A numpy array of shape (num_test, D) containing test data. Returns: - dists: A numpy array of shape (num_test, num_train) where dists[i, j] is the Euclidean distance between the ith test point and the jth training point. """ num_test = X.shape[0]#测试样本数 num_train = self.X_train.shape[0]#训练样本数 dists = np.zeros((num_test, num_train)) for i in range(num_test): for j in range(num_train): ##################################################################### # TODO: # # Compute the l2 distance between the ith test point and the jth # # training point, and store the result in dists[i, j]. You should # # not use a loop over dimension. # ##################################################################### #两层循环 dists[i,j]=np.sqrt(np.dot(X[i]-self.X_train[j],X[i]-self.X_train[j])) ##################################################################### # END OF YOUR CODE # ##################################################################### return dists def compute_distances_one_loop(self, X): """ Compute the distance between each test point in X and each training point in self.X_train using a single loop over the test data. Input / Output: Same as compute_distances_two_loops """ num_test = X.shape[0] num_train = self.X_train.shape[0] dists = np.zeros((num_test, num_train)) for i in range(num_test): ####################################################################### # TODO: # # Compute the l2 distance between the ith test point and all training # # points, and store the result in dists[i, :]. # ####################################################################### dists[i,:]=np.sqrt(np.sum(np.square(self.X_train-X[i,:]),axis=1)) ####################################################################### # END OF YOUR CODE # ####################################################################### return dists def compute_distances_no_loops(self, X): """ Compute the distance between each test point in X and each training point in self.X_train using no explicit loops. Input / Output: Same as compute_distances_two_loops """ num_test = X.shape[0] num_train = self.X_train.shape[0] dists = np.zeros((num_test, num_train)) ######################################################################### # TODO: # # Compute the l2 distance between all test points and all training # # points without using any explicit loops, and store the result in # # dists. # # # # You should implement this function using only basic array operations; # # in particular you should not use functions from scipy. # # # # HINT: Try to formulate the l2 distance using matrix multiplication # # and two broadcast sums. # ######################################################################### sq_train=np.sum(np.square(self.X_train),axis=1)#(5000,) sq_test=np.sum(np.square(X),axis=1) #(500,) mul=np.multiply(np.dot(X,self.X_train.T),-2)#(500,5000) dists=sq_train+sq_test+mul dists=np.sqrt(dists) ######################################################################### # END OF YOUR CODE # ######################################################################### return dists def predict_labels(self, dists, k=1): """ Given a matrix of distances between test points and training points, predict a label for each test point. Inputs: - dists: A numpy array of shape (num_test, num_train) where dists[i, j] gives the distance betwen the ith test point and the jth training point. Returns: - y: A numpy array of shape (num_test,) containing predicted labels for the test data, where y[i] is the predicted label for the test point X[i]. """ num_test = dists.shape[0] y_pred = np.zeros(num_test) for i in range(num_test): # A list of length k storing the labels of the k nearest neighbors to # the ith test point. closest_y = [] ######################################################################### # TODO: # # Use the distance matrix to find the k nearest neighbors of the ith # # training point, and use self.y_train to find the labels of these # # neighbors. Store these labels in closest_y. # # Hint: Look up the function numpy.argsort. # ######################################################################### sort=np.argsort(dists[i,:])#按降序排列 index=sort[0:k]#取前k个距离最小的 closest_y[i,:]=self.y_train(index) ######################################################################### # TODO: # # Now that you have found the labels of the k nearest neighbors, you # # need to find the most common label in the list closest_y of labels. # # Store this label in y_pred[i]. Break ties by choosing the smaller # # label. # ######################################################################### y_pred[i] = np.argmax(np.bincount(closest_y)) ######################################################################### # END OF YOUR CODE # ######################################################################### return y_pred

5.实际训练和预测

np.linalg.norm()计算范式距离

复制代码
1
复制代码
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
classifier=KNearestNeighbor() classifier.train(X_train,y_train) #用两层循环计算 dists=classifier.compute_distances_two_loops(X_test) print (dists.shape) y_test_pred=classifier.predict_labels(dists,k=1) num_correct=np.sum(y_test_pred==y_test) accuracy=float(num_correct)/num_test print("Got %d/ %d correct => accuracy: %f" %(num_correct,num_test,accuracy)) #计算一层循环的结果 dists_one=classifier.compute_distances_one_loop(X_test) #检查两次距离是否一样 difference=np.linalg.norm(dists-dists_one,ord=2) print("Difference was: %f" % difference) if difference<0.001: print('Good! the distance matricecs are the same') else: print("Uh-oh! the distance matrices are different") #full-vectorized version dists_two=classifier.compute_distances_no_loops(X_test) #检查距离是否一样 difference = np.linalg.norm(dists - dists_two, ord='fro') print ('Difference was: %f' % (difference, )) if difference < 0.001: print ('Good! The distance matrices are the same') else: print ('Uh-oh! The distance matrices are different')

6.计算不同方法的花费时间

传递一个函数当参数,以及所有其参数

复制代码
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
def time_function(f,*args): import time tic=time.time() f(*args) toc=time.time() return toc-tic two_loop_time=time_function(classifier.compute_distances_two_loops,X_test) print("Two loop version took %f seconds" %two_loop_time) one_loop_time=time_function(classifier.compute_distances_one_loops,X_test) print("One loop version took %f seconds" %one_loop_time) no_loop_time=time_function(classifier.compute_distances_no_loops,X_test) print("No loop version took %f seconds" %no_loop_time)

7.筛选不同的k

np.array_split(x,3)将x拆成3份,不用恰好分完

复制代码
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
num_folds=5 k_choices=[1,3,5,8,10,12,15,20,50,100] X_train_folds=[] y_train_folds=[] ################################################################################ # TODO: # # Split up the training data into folds. After splitting, X_train_folds and # # y_train_folds should each be lists of length num_folds, where # # y_train_folds[i] is the label vector for the points in X_train_folds[i]. # # Hint: Look up the numpy array_split function. # ################################################################################ X_train_folds=np.array_split(X_train,num_folds)#分成num_folds份验证集, list数据类型 y_train_folds=np.array_split(y_train,num_folds) ################################################################################ # END OF YOUR CODE # ################################################################################ # A dictionary holding the accuracies for different values of k that we find # when running cross-validation. After running cross-validation, # k_to_accuracies[k] should be a list of length num_folds giving the different # accuracy values that we found when using that value of k. k_to_accuracies = {} ################################################################################ # TODO: # # Perform k-fold cross validation to find the best value of k. For each # # possible value of k, run the k-nearest-neighbor algorithm num_folds times, # # where in each case you use all but one of the folds as training data and the # # last fold as a validation set. Store the accuracies for all fold and all # # values of k in the k_to_accuracies dictionary. # ################################################################################ for k in k_choices: k_to_accuracies[k]=np.zeros(num_folds) for i in range(num_folds): Xtr=np.array(X_train_folds[:i]+X_train_folds[i+1:]) ytr=np.array(y_train_folds[:i]+y_train_folds[i+1:]) Xte=np.array(X_train_folds[i]) yte=np.array(y_train_folds[i]) Xtr=np.reshape(Xtr,(np.int32(X_train.shape[0] * 4 / 5), -1)) ytr = np.reshape(ytr, (np.int32(y_train.shape[0] * 4 / 5), -1)) Xte=np.reshape(Xte,(np.int32(X_train.shape[0]/5),-1)) yte = np.reshape(yte, (np.int32(y_train.shape[0] / 5), -1)) classifier.train(Xtr,ytr) yte_pred=classifier.predict(Xte,k) yte_pred=np.reshape(yte_pred,(yte_pred.shape[0],-1)) num_correct=np.sum(yte_pred==yte) accuracy=float(num_correct)/len(yte) k_to_accuracies[k][i]=accuracy #print out the computed accuracies for k in sorted(k_to_accuracies): for accuracy in k_to_accuracies[k]: print ('k = %d, accuracy = %f' % (k, accuracy))


最后

以上就是踏实花瓣最近收集整理的关于CS231n——Assignment1-KNN的全部内容,更多相关CS231n——Assignment1-KNN内容请搜索靠谱客的其他文章。

本图文内容来源于网友提供,作为学习参考使用,或来自网络收集整理,版权属于原作者所有。
点赞(65)

评论列表共有 0 条评论

立即
投稿
返回
顶部