我是靠谱客的博主 慈祥篮球,最近开发中收集的这篇文章主要介绍复变函数论里的欧拉公式,觉得挺不错的,现在分享给大家,希望可以做个参考。

概述

e^ix=cosx+isinx,e是自然对数的底,i是虚数单位。它将三角函数的定义域扩大到复数,建立了三角函数和指数函数的关系,它在复变函数论里占有非常重要的地位。

e^ix=cosx+isinx的证明:

因为e^x=1+x/1!+x^2/2!+x^3/3!+x^4/4!+……

cos x=1-x^2/2!+x^4/4!-x^6/6!……

sin x=x-x^3/3!+x^5/5!-x^7/7!……

在e^x的展开式中把x换成±ix.(±i)^2=-1, (±i)^3=∓i, (±i)^4=1 ……

e^±ix=1±x/1!-x^2/2!+x^3/3!∓x^4/4!……

=(1-x^2/2!+……)±i(x-x^3/3!……)

所以e^±ix=cosx±isinx

将公式里的x换成-x,得到:

e^-ix=cosx-isinx,然后采用两式相加减的方法得到:

sinx=(e^ix-e^-ix)/(2i),cosx=(e^ix+e^-ix)/2.这两个也叫做欧拉公式。将e^ix=cosx+isinx中的x取作π就得到:

e^iπ+1=0.

这个恒等式也叫做欧拉公式,它是数学里最令人着迷的一个公式,它将数学里最重要的几个数字联系到了一起:两个超越数:自然对数的底e,圆周率π,两个单位:虚数单位i和自然数的单位1,以及数学里常见的0。数学家们评价它是“上帝创造的公式”,我们只能看它而不能理解它。

最后

以上就是慈祥篮球为你收集整理的复变函数论里的欧拉公式的全部内容,希望文章能够帮你解决复变函数论里的欧拉公式所遇到的程序开发问题。

如果觉得靠谱客网站的内容还不错,欢迎将靠谱客网站推荐给程序员好友。

本图文内容来源于网友提供,作为学习参考使用,或来自网络收集整理,版权属于原作者所有。
点赞(41)

评论列表共有 0 条评论

立即
投稿
返回
顶部