我是靠谱客的博主 冷酷钥匙,最近开发中收集的这篇文章主要介绍caffe Resnet-50 finetune 所有代码+需要注意的地方,觉得挺不错的,现在分享给大家,希望可以做个参考。

概述

之前一直只专注于VGG-16,围绕VGG-16做了很多实验,心想其他网络也都差不多,这次实习时候又是分类问题,就心想换一个网络试试,因为数据有240W,比较大,就选Resnet吧,参数少,训练快,效果还好。看论文的结果Resnet-50和101、152差距也不算太大,于是选了最小的Resnet-50。
下面是论文中在ImageNet上的测试结果:
这里写图片描述

言归正转,说说要注意到点(我用的caffe)
注意:
在finetune Resnet时,网络结构文件中BatchNorm层的参数要注意:
1.在训练时所有BN层要设置use_global_stats: false(也可以不写,caffe默认是false)
2.在测试时所有BN层要设置use_global_stats: true

影响:
1.训练如果不设为false,会导致模型不收敛
2.测试如果不设置为true,会导致准确率极低
(亲测,测试时为false时acc=0.05,为true时acc=0.91)

区别:
use_global_stats: false是使用了每个Batch里的数据的均值和方差;
use_global_stats: true是使用了所有数据的均值和方差。


另外一个是我在linux下bash脚本文件里遇到的一个坑:

.sh 文件里caffe train 命令中间不能有注释, 否则会各种报错

下面是正确的训练脚本:
其中包括了将日志输出到log文件夹下,并以时间命名的功能。
训练脚本

#########################################################################
# File Name: train_res50.sh
# Author: plustang
# mail: 
# Created Time: Mon 20 Feb 2017 10:59:03 PM EDT
#########################################################################
#!/bin/bash
#!/usr/bin/env sh
PRETRAINED_MODEL=../models/pre-trained-models/residual_network/ResNet-50-model.caffemodel
t=$(date +%Y-%m-%d_%H:%M:%S) 
LOG=./log/tuan_res50_$t.log
GLOG_logtostderr=1 ../build/tools/caffe train 
    --solver=../models/residual_network/solver.prototxt 
    --weights=$PRETRAINED_MODEL 
    --gpu=2,3 2>&1 | tee $LOG

测试脚本

#!/bin/bash
#!/usr/bin/env sh
GLOG_logtostderr=1 ../build/tools/caffe test 
    --model=../models/residual_network/ResNet-50-val.prototxt 
    --weights=../models/residual_network/res_50_iter_40000.caffemodel 
    --gpu=0 
    --iterations=2000

中途恢复训练

#!/bin/bash
#!/usr/bin/env sh
t=$(date +%Y-%m-%d_%H:%M:%S) 
LOG=./log/tuan_res50_$t.log
GLOG_logtostderr=1 ../build/tools/caffe train 
    --solver=../models/residual_network/solver.prototxt 
    --snapshot=../models/residual_network/res_50_iter_40000.solverstate 
    --gpu=2,3 2>&1 | tee $LOG

finetune 时修改网络结构文件,只修改数据输入层类别数即可。
下面是我修改后的prototxt,其中数据层是将图片直接输入网络,并且做了一些镜像、颜色、亮度、缩放的变换增加数据量,文件里测试部分没有用,可以删掉。不删也不影响训练,后面有一个用来测试的prototxt文件。
类别数在最后的全连接层fc204层,将类别数量改为所需的即可。
(ps: #后面都是注释,可以删掉)

训练用的网络:ResNet-50-train-val.prototxt

name: "ResNet-50"
layer {
    name: "data"
    type: "ImageData"
    top: "data"
    top: "label"
    include {
        phase: TRAIN
    }
    transform_param {
        #scale: 0.00390625
        crop_size: 224
        mean_value: 104
        mean_value: 117
        mean_value: 123
        mirror: true
        gamma_color_transform: true
        gamma_left: 0.8 #0.5
        gamma_right: 2.0 #1.5
        gamma_step_num: 8 #4
        brightness:true
        brightness_alpha_left: 0.7
        brightness_alpha_right: 1.2
        brightness_beta_left: -5.0
        brightness_beta_right: 5.0
        brightness_alpha_num: 4
        brightness_beta_num: 4
        resize:true
        resize_ratio:14
        rotate:false
    }
    image_data_param {
          new_width:256
          new_height:256
          shuffle: true
          source: "/export/plustang/data/tuan_style_data/tuan_train.txt"
          root_folder : "/export/plustang/data/tuan_style_data/imgs/"
          batch_size: 28
    }
    #data_param {
        #source: "/root/plustang/data/facenet_train_rand_sample15_lmdb"
        #need_data_augment:true
        #batch_size: 1000
        #backend: LMDB
    #}
}
layer {
    name: "data"
    type: "ImageData"
    top: "data"
    top: "label"
    include {
        phase: TEST
    }
    transform_param {
        #scale: 0.00390625
        crop_size: 224
        mean_value: 104
        mean_value: 117
        mean_value: 123
        mirror: false
    }
    image_data_param {
      new_width:256
      new_height:256
      shuffle: false
      source: "/export/plustang/data/tuan_style_data/tuan_val.txt"
      root_folder : "/export/plustang/data/tuan_style_data/imgs/"
      batch_size: 1
    }
}
#layer {
#  name: "data"
#  type: "Data"
#  top: "data"
#  top: "label"
#  include {
#    phase: TRAIN
#  }
#  transform_param {
#    crop_size: 224
#    mean_value: 104
#    mean_value: 117
#    mean_value: 123
#    mirror: true
#    gamma_color_transform: true
#    gamma_left: 0.8 #0.5
#    gamma_right: 2.0 #1.5
#    gamma_step_num: 8 #4
#    brightness:true
#    brightness_alpha_left: 0.7
#    brightness_alpha_right: 1.2
#    brightness_beta_left: -5.0
#    brightness_beta_right: 5.0
#    brightness_alpha_num: 4
#    brightness_beta_num: 4
#    resize:true
#    resize_ratio:14
#    rotate:true
#  }
#  data_param {
#    source: "/export/plustang/data/tuan_style_data/train_lmdb"
#    need_data_augment:true
#    batch_size: 28
#    backend: LMDB
#  }
#}
#layer {
#  name: "data"
#  type: "Data"
#  top: "data"
#  top: "label"
#  include {
#    phase: TEST
#  }
#  transform_param {
#    crop_size: 224
#    mean_value: 104
#    mean_value: 117
#    mean_value: 123
#    mirror: false
#  }
#  data_param {
#    source: "/export/plustang/data/tuan_style_data/val_lmdb"
#    need_data_augment:false
#    batch_size: 1
#    backend: LMDB
#  }
#}
layer {
    bottom: "data"
    top: "conv1"
    name: "conv1"
    type: "Convolution"
    convolution_param {
        num_output: 64
        kernel_size: 7
        pad: 3
        stride: 2
    }
}

layer {
    bottom: "conv1"
    top: "conv1"
    name: "bn_conv1"
    type: "BatchNorm"
    batch_norm_param {
        use_global_stats: false
    }
}

layer {
    bottom: "conv1"
    top: "conv1"
    name: "scale_conv1"
    type: "Scale"
    scale_param {
        bias_term: true
    }
}

layer {
    bottom: "conv1"
    top: "conv1"
    name: "conv1_relu"
    type: "ReLU"
}

layer {
    bottom: "conv1"
    top: "pool1"
    name: "pool1"
    type: "Pooling"
    pooling_param {
        kernel_size: 3
        stride: 2
        pool: MAX
    }
}

layer {
    bottom: "pool1"
    top: "res2a_branch1"
    name: "res2a_branch1"
    type: "Convolution"
    convolution_param {
        num_output: 256
        kernel_size: 1
        pad: 0
        stride: 1
        bias_term: false
    }
}

layer {
    bottom: "res2a_branch1"
    top: "res2a_branch1"
    name: "bn2a_branch1"
    type: "BatchNorm"
    batch_norm_param {
        use_global_stats: false
    }
}

layer {
    bottom: "res2a_branch1"
    top: "res2a_branch1"
    name: "scale2a_branch1"
    type: "Scale"
    scale_param {
        bias_term: true
    }
}

layer {
    bottom: "pool1"
    top: "res2a_branch2a"
    name: "res2a_branch2a"
    type: "Convolution"
    convolution_param {
        num_output: 64
        kernel_size: 1
        pad: 0
        stride: 1
        bias_term: false
    }
}

layer {
    bottom: "res2a_branch2a"
    top: "res2a_branch2a"
    name: "bn2a_branch2a"
    type: "BatchNorm"
    batch_norm_param {
        use_global_stats: false
    }
}

layer {
    bottom: "res2a_branch2a"
    top: "res2a_branch2a"
    name: "scale2a_branch2a"
    type: "Scale"
    scale_param {
        bias_term: true
    }
}

layer {
    bottom: "res2a_branch2a"
    top: "res2a_branch2a"
    name: "res2a_branch2a_relu"
    type: "ReLU"
}

layer {
    bottom: "res2a_branch2a"
    top: "res2a_branch2b"
    name: "res2a_branch2b"
    type: "Convolution"
    convolution_param {
        num_output: 64
        kernel_size: 3
        pad: 1
        stride: 1
        bias_term: false
    }
}

layer {
    bottom: "res2a_branch2b"
    top: "res2a_branch2b"
    name: "bn2a_branch2b"
    type: "BatchNorm"
    batch_norm_param {
        use_global_stats: false
    }
}

layer {
    bottom: "res2a_branch2b"
    top: "res2a_branch2b"
    name: "scale2a_branch2b"
    type: "Scale"
    scale_param {
        bias_term: true
    }
}

layer {
    bottom: "res2a_branch2b"
    top: "res2a_branch2b"
    name: "res2a_branch2b_relu"
    type: "ReLU"
}

layer {
    bottom: "res2a_branch2b"
    top: "res2a_branch2c"
    name: "res2a_branch2c"
    type: "Convolution"
    convolution_param {
        num_output: 256
        kernel_size: 1
        pad: 0
        stride: 1
        bias_term: false
    }
}

layer {
    bottom: "res2a_branch2c"
    top: "res2a_branch2c"
    name: "bn2a_branch2c"
    type: "BatchNorm"
    batch_norm_param {
        use_global_stats: false
    }
}

layer {
    bottom: "res2a_branch2c"
    top: "res2a_branch2c"
    name: "scale2a_branch2c"
    type: "Scale"
    scale_param {
        bias_term: true
    }
}

layer {
    bottom: "res2a_branch1"
    bottom: "res2a_branch2c"
    top: "res2a"
    name: "res2a"
    type: "Eltwise"
}

layer {
    bottom: "res2a"
    top: "res2a"
    name: "res2a_relu"
    type: "ReLU"
}

layer {
    bottom: "res2a"
    top: "res2b_branch2a"
    name: "res2b_branch2a"
    type: "Convolution"
    convolution_param {
        num_output: 64
        kernel_size: 1
        pad: 0
        stride: 1
        bias_term: false
    }
}

layer {
    bottom: "res2b_branch2a"
    top: "res2b_branch2a"
    name: "bn2b_branch2a"
    type: "BatchNorm"
    batch_norm_param {
        use_global_stats: false
    }
}

layer {
    bottom: "res2b_branch2a"
    top: "res2b_branch2a"
    name: "scale2b_branch2a"
    type: "Scale"
    scale_param {
        bias_term: true
    }
}

layer {
    bottom: "res2b_branch2a"
    top: "res2b_branch2a"
    name: "res2b_branch2a_relu"
    type: "ReLU"
}

layer {
    bottom: "res2b_branch2a"
    top: "res2b_branch2b"
    name: "res2b_branch2b"
    type: "Convolution"
    convolution_param {
        num_output: 64
        kernel_size: 3
        pad: 1
        stride: 1
        bias_term: false
    }
}

layer {
    bottom: "res2b_branch2b"
    top: "res2b_branch2b"
    name: "bn2b_branch2b"
    type: "BatchNorm"
    batch_norm_param {
        use_global_stats: false
    }
}

layer {
    bottom: "res2b_branch2b"
    top: "res2b_branch2b"
    name: "scale2b_branch2b"
    type: "Scale"
    scale_param {
        bias_term: true
    }
}

layer {
    bottom: "res2b_branch2b"
    top: "res2b_branch2b"
    name: "res2b_branch2b_relu"
    type: "ReLU"
}

layer {
    bottom: "res2b_branch2b"
    top: "res2b_branch2c"
    name: "res2b_branch2c"
    type: "Convolution"
    convolution_param {
        num_output: 256
        kernel_size: 1
        pad: 0
        stride: 1
        bias_term: false
    }
}

layer {
    bottom: "res2b_branch2c"
    top: "res2b_branch2c"
    name: "bn2b_branch2c"
    type: "BatchNorm"
    batch_norm_param {
        use_global_stats: false
    }
}

layer {
    bottom: "res2b_branch2c"
    top: "res2b_branch2c"
    name: "scale2b_branch2c"
    type: "Scale"
    scale_param {
        bias_term: true
    }
}

layer {
    bottom: "res2a"
    bottom: "res2b_branch2c"
    top: "res2b"
    name: "res2b"
    type: "Eltwise"
}

layer {
    bottom: "res2b"
    top: "res2b"
    name: "res2b_relu"
    type: "ReLU"
}

layer {
    bottom: "res2b"
    top: "res2c_branch2a"
    name: "res2c_branch2a"
    type: "Convolution"
    convolution_param {
        num_output: 64
        kernel_size: 1
        pad: 0
        stride: 1
        bias_term: false
    }
}

layer {
    bottom: "res2c_branch2a"
    top: "res2c_branch2a"
    name: "bn2c_branch2a"
    type: "BatchNorm"
    batch_norm_param {
        use_global_stats: false
    }
}

layer {
    bottom: "res2c_branch2a"
    top: "res2c_branch2a"
    name: "scale2c_branch2a"
    type: "Scale"
    scale_param {
        bias_term: true
    }
}

layer {
    bottom: "res2c_branch2a"
    top: "res2c_branch2a"
    name: "res2c_branch2a_relu"
    type: "ReLU"
}

layer {
    bottom: "res2c_branch2a"
    top: "res2c_branch2b"
    name: "res2c_branch2b"
    type: "Convolution"
    convolution_param {
        num_output: 64
        kernel_size: 3
        pad: 1
        stride: 1
        bias_term: false
    }
}

layer {
    bottom: "res2c_branch2b"
    top: "res2c_branch2b"
    name: "bn2c_branch2b"
    type: "BatchNorm"
    batch_norm_param {
        use_global_stats: false
    }
}

layer {
    bottom: "res2c_branch2b"
    top: "res2c_branch2b"
    name: "scale2c_branch2b"
    type: "Scale"
    scale_param {
        bias_term: true
    }
}

layer {
    bottom: "res2c_branch2b"
    top: "res2c_branch2b"
    name: "res2c_branch2b_relu"
    type: "ReLU"
}

layer {
    bottom: "res2c_branch2b"
    top: "res2c_branch2c"
    name: "res2c_branch2c"
    type: "Convolution"
    convolution_param {
        num_output: 256
        kernel_size: 1
        pad: 0
        stride: 1
        bias_term: false
    }
}

layer {
    bottom: "res2c_branch2c"
    top: "res2c_branch2c"
    name: "bn2c_branch2c"
    type: "BatchNorm"
    batch_norm_param {
        use_global_stats: false
    }
}

layer {
    bottom: "res2c_branch2c"
    top: "res2c_branch2c"
    name: "scale2c_branch2c"
    type: "Scale"
    scale_param {
        bias_term: true
    }
}

layer {
    bottom: "res2b"
    bottom: "res2c_branch2c"
    top: "res2c"
    name: "res2c"
    type: "Eltwise"
}

layer {
    bottom: "res2c"
    top: "res2c"
    name: "res2c_relu"
    type: "ReLU"
}

layer {
    bottom: "res2c"
    top: "res3a_branch1"
    name: "res3a_branch1"
    type: "Convolution"
    convolution_param {
        num_output: 512
        kernel_size: 1
        pad: 0
        stride: 2
        bias_term: false
    }
}

layer {
    bottom: "res3a_branch1"
    top: "res3a_branch1"
    name: "bn3a_branch1"
    type: "BatchNorm"
    batch_norm_param {
        use_global_stats: false
    }
}

layer {
    bottom: "res3a_branch1"
    top: "res3a_branch1"
    name: "scale3a_branch1"
    type: "Scale"
    scale_param {
        bias_term: true
    }
}

layer {
    bottom: "res2c"
    top: "res3a_branch2a"
    name: "res3a_branch2a"
    type: "Convolution"
    convolution_param {
        num_output: 128
        kernel_size: 1
        pad: 0
        stride: 2
        bias_term: false
    }
}

layer {
    bottom: "res3a_branch2a"
    top: "res3a_branch2a"
    name: "bn3a_branch2a"
    type: "BatchNorm"
    batch_norm_param {
        use_global_stats: false
    }
}

layer {
    bottom: "res3a_branch2a"
    top: "res3a_branch2a"
    name: "scale3a_branch2a"
    type: "Scale"
    scale_param {
        bias_term: true
    }
}

layer {
    bottom: "res3a_branch2a"
    top: "res3a_branch2a"
    name: "res3a_branch2a_relu"
    type: "ReLU"
}

layer {
    bottom: "res3a_branch2a"
    top: "res3a_branch2b"
    name: "res3a_branch2b"
    type: "Convolution"
    convolution_param {
        num_output: 128
        kernel_size: 3
        pad: 1
        stride: 1
        bias_term: false
    }
}

layer {
    bottom: "res3a_branch2b"
    top: "res3a_branch2b"
    name: "bn3a_branch2b"
    type: "BatchNorm"
    batch_norm_param {
        use_global_stats: false
    }
}

layer {
    bottom: "res3a_branch2b"
    top: "res3a_branch2b"
    name: "scale3a_branch2b"
    type: "Scale"
    scale_param {
        bias_term: true
    }
}

layer {
    bottom: "res3a_branch2b"
    top: "res3a_branch2b"
    name: "res3a_branch2b_relu"
    type: "ReLU"
}

layer {
    bottom: "res3a_branch2b"
    top: "res3a_branch2c"
    name: "res3a_branch2c"
    type: "Convolution"
    convolution_param {
        num_output: 512
        kernel_size: 1
        pad: 0
        stride: 1
        bias_term: false
    }
}

layer {
    bottom: "res3a_branch2c"
    top: "res3a_branch2c"
    name: "bn3a_branch2c"
    type: "BatchNorm"
    batch_norm_param {
        use_global_stats: false
    }
}

layer {
    bottom: "res3a_branch2c"
    top: "res3a_branch2c"
    name: "scale3a_branch2c"
    type: "Scale"
    scale_param {
        bias_term: true
    }
}

layer {
    bottom: "res3a_branch1"
    bottom: "res3a_branch2c"
    top: "res3a"
    name: "res3a"
    type: "Eltwise"
}

layer {
    bottom: "res3a"
    top: "res3a"
    name: "res3a_relu"
    type: "ReLU"
}

layer {
    bottom: "res3a"
    top: "res3b_branch2a"
    name: "res3b_branch2a"
    type: "Convolution"
    convolution_param {
        num_output: 128
        kernel_size: 1
        pad: 0
        stride: 1
        bias_term: false
    }
}

layer {
    bottom: "res3b_branch2a"
    top: "res3b_branch2a"
    name: "bn3b_branch2a"
    type: "BatchNorm"
    batch_norm_param {
        use_global_stats: false
    }
}

layer {
    bottom: "res3b_branch2a"
    top: "res3b_branch2a"
    name: "scale3b_branch2a"
    type: "Scale"
    scale_param {
        bias_term: true
    }
}

layer {
    bottom: "res3b_branch2a"
    top: "res3b_branch2a"
    name: "res3b_branch2a_relu"
    type: "ReLU"
}

layer {
    bottom: "res3b_branch2a"
    top: "res3b_branch2b"
    name: "res3b_branch2b"
    type: "Convolution"
    convolution_param {
        num_output: 128
        kernel_size: 3
        pad: 1
        stride: 1
        bias_term: false
    }
}

layer {
    bottom: "res3b_branch2b"
    top: "res3b_branch2b"
    name: "bn3b_branch2b"
    type: "BatchNorm"
    batch_norm_param {
        use_global_stats: false
    }
}

layer {
    bottom: "res3b_branch2b"
    top: "res3b_branch2b"
    name: "scale3b_branch2b"
    type: "Scale"
    scale_param {
        bias_term: true
    }
}

layer {
    bottom: "res3b_branch2b"
    top: "res3b_branch2b"
    name: "res3b_branch2b_relu"
    type: "ReLU"
}

layer {
    bottom: "res3b_branch2b"
    top: "res3b_branch2c"
    name: "res3b_branch2c"
    type: "Convolution"
    convolution_param {
        num_output: 512
        kernel_size: 1
        pad: 0
        stride: 1
        bias_term: false
    }
}

layer {
    bottom: "res3b_branch2c"
    top: "res3b_branch2c"
    name: "bn3b_branch2c"
    type: "BatchNorm"
    batch_norm_param {
        use_global_stats: false
    }
}

layer {
    bottom: "res3b_branch2c"
    top: "res3b_branch2c"
    name: "scale3b_branch2c"
    type: "Scale"
    scale_param {
        bias_term: true
    }
}

layer {
    bottom: "res3a"
    bottom: "res3b_branch2c"
    top: "res3b"
    name: "res3b"
    type: "Eltwise"
}

layer {
    bottom: "res3b"
    top: "res3b"
    name: "res3b_relu"
    type: "ReLU"
}

layer {
    bottom: "res3b"
    top: "res3c_branch2a"
    name: "res3c_branch2a"
    type: "Convolution"
    convolution_param {
        num_output: 128
        kernel_size: 1
        pad: 0
        stride: 1
        bias_term: false
    }
}

layer {
    bottom: "res3c_branch2a"
    top: "res3c_branch2a"
    name: "bn3c_branch2a"
    type: "BatchNorm"
    batch_norm_param {
        use_global_stats: false
    }
}

layer {
    bottom: "res3c_branch2a"
    top: "res3c_branch2a"
    name: "scale3c_branch2a"
    type: "Scale"
    scale_param {
        bias_term: true
    }
}

layer {
    bottom: "res3c_branch2a"
    top: "res3c_branch2a"
    name: "res3c_branch2a_relu"
    type: "ReLU"
}

layer {
    bottom: "res3c_branch2a"
    top: "res3c_branch2b"
    name: "res3c_branch2b"
    type: "Convolution"
    convolution_param {
        num_output: 128
        kernel_size: 3
        pad: 1
        stride: 1
        bias_term: false
    }
}

layer {
    bottom: "res3c_branch2b"
    top: "res3c_branch2b"
    name: "bn3c_branch2b"
    type: "BatchNorm"
    batch_norm_param {
        use_global_stats: false
    }
}

layer {
    bottom: "res3c_branch2b"
    top: "res3c_branch2b"
    name: "scale3c_branch2b"
    type: "Scale"
    scale_param {
        bias_term: true
    }
}

layer {
    bottom: "res3c_branch2b"
    top: "res3c_branch2b"
    name: "res3c_branch2b_relu"
    type: "ReLU"
}

layer {
    bottom: "res3c_branch2b"
    top: "res3c_branch2c"
    name: "res3c_branch2c"
    type: "Convolution"
    convolution_param {
        num_output: 512
        kernel_size: 1
        pad: 0
        stride: 1
        bias_term: false
    }
}

layer {
    bottom: "res3c_branch2c"
    top: "res3c_branch2c"
    name: "bn3c_branch2c"
    type: "BatchNorm"
    batch_norm_param {
        use_global_stats: false
    }
}

layer {
    bottom: "res3c_branch2c"
    top: "res3c_branch2c"
    name: "scale3c_branch2c"
    type: "Scale"
    scale_param {
        bias_term: true
    }
}

layer {
    bottom: "res3b"
    bottom: "res3c_branch2c"
    top: "res3c"
    name: "res3c"
    type: "Eltwise"
}

layer {
    bottom: "res3c"
    top: "res3c"
    name: "res3c_relu"
    type: "ReLU"
}

layer {
    bottom: "res3c"
    top: "res3d_branch2a"
    name: "res3d_branch2a"
    type: "Convolution"
    convolution_param {
        num_output: 128
        kernel_size: 1
        pad: 0
        stride: 1
        bias_term: false
    }
}

layer {
    bottom: "res3d_branch2a"
    top: "res3d_branch2a"
    name: "bn3d_branch2a"
    type: "BatchNorm"
    batch_norm_param {
        use_global_stats: false
    }
}

layer {
    bottom: "res3d_branch2a"
    top: "res3d_branch2a"
    name: "scale3d_branch2a"
    type: "Scale"
    scale_param {
        bias_term: true
    }
}

layer {
    bottom: "res3d_branch2a"
    top: "res3d_branch2a"
    name: "res3d_branch2a_relu"
    type: "ReLU"
}

layer {
    bottom: "res3d_branch2a"
    top: "res3d_branch2b"
    name: "res3d_branch2b"
    type: "Convolution"
    convolution_param {
        num_output: 128
        kernel_size: 3
        pad: 1
        stride: 1
        bias_term: false
    }
}

layer {
    bottom: "res3d_branch2b"
    top: "res3d_branch2b"
    name: "bn3d_branch2b"
    type: "BatchNorm"
    batch_norm_param {
        use_global_stats: false
    }
}

layer {
    bottom: "res3d_branch2b"
    top: "res3d_branch2b"
    name: "scale3d_branch2b"
    type: "Scale"
    scale_param {
        bias_term: true
    }
}

layer {
    bottom: "res3d_branch2b"
    top: "res3d_branch2b"
    name: "res3d_branch2b_relu"
    type: "ReLU"
}

layer {
    bottom: "res3d_branch2b"
    top: "res3d_branch2c"
    name: "res3d_branch2c"
    type: "Convolution"
    convolution_param {
        num_output: 512
        kernel_size: 1
        pad: 0
        stride: 1
        bias_term: false
    }
}

layer {
    bottom: "res3d_branch2c"
    top: "res3d_branch2c"
    name: "bn3d_branch2c"
    type: "BatchNorm"
    batch_norm_param {
        use_global_stats: false
    }
}

layer {
    bottom: "res3d_branch2c"
    top: "res3d_branch2c"
    name: "scale3d_branch2c"
    type: "Scale"
    scale_param {
        bias_term: true
    }
}

layer {
    bottom: "res3c"
    bottom: "res3d_branch2c"
    top: "res3d"
    name: "res3d"
    type: "Eltwise"
}

layer {
    bottom: "res3d"
    top: "res3d"
    name: "res3d_relu"
    type: "ReLU"
}

layer {
    bottom: "res3d"
    top: "res4a_branch1"
    name: "res4a_branch1"
    type: "Convolution"
    convolution_param {
        num_output: 1024
        kernel_size: 1
        pad: 0
        stride: 2
        bias_term: false
    }
}

layer {
    bottom: "res4a_branch1"
    top: "res4a_branch1"
    name: "bn4a_branch1"
    type: "BatchNorm"
    batch_norm_param {
        use_global_stats: false
    }
}

layer {
    bottom: "res4a_branch1"
    top: "res4a_branch1"
    name: "scale4a_branch1"
    type: "Scale"
    scale_param {
        bias_term: true
    }
}

layer {
    bottom: "res3d"
    top: "res4a_branch2a"
    name: "res4a_branch2a"
    type: "Convolution"
    convolution_param {
        num_output: 256
        kernel_size: 1
        pad: 0
        stride: 2
        bias_term: false
    }
}

layer {
    bottom: "res4a_branch2a"
    top: "res4a_branch2a"
    name: "bn4a_branch2a"
    type: "BatchNorm"
    batch_norm_param {
        use_global_stats: false
    }
}

layer {
    bottom: "res4a_branch2a"
    top: "res4a_branch2a"
    name: "scale4a_branch2a"
    type: "Scale"
    scale_param {
        bias_term: true
    }
}

layer {
    bottom: "res4a_branch2a"
    top: "res4a_branch2a"
    name: "res4a_branch2a_relu"
    type: "ReLU"
}

layer {
    bottom: "res4a_branch2a"
    top: "res4a_branch2b"
    name: "res4a_branch2b"
    type: "Convolution"
    convolution_param {
        num_output: 256
        kernel_size: 3
        pad: 1
        stride: 1
        bias_term: false
    }
}

layer {
    bottom: "res4a_branch2b"
    top: "res4a_branch2b"
    name: "bn4a_branch2b"
    type: "BatchNorm"
    batch_norm_param {
        use_global_stats: false
    }
}

layer {
    bottom: "res4a_branch2b"
    top: "res4a_branch2b"
    name: "scale4a_branch2b"
    type: "Scale"
    scale_param {
        bias_term: true
    }
}

layer {
    bottom: "res4a_branch2b"
    top: "res4a_branch2b"
    name: "res4a_branch2b_relu"
    type: "ReLU"
}

layer {
    bottom: "res4a_branch2b"
    top: "res4a_branch2c"
    name: "res4a_branch2c"
    type: "Convolution"
    convolution_param {
        num_output: 1024
        kernel_size: 1
        pad: 0
        stride: 1
        bias_term: false
    }
}

layer {
    bottom: "res4a_branch2c"
    top: "res4a_branch2c"
    name: "bn4a_branch2c"
    type: "BatchNorm"
    batch_norm_param {
        use_global_stats: false
    }
}

layer {
    bottom: "res4a_branch2c"
    top: "res4a_branch2c"
    name: "scale4a_branch2c"
    type: "Scale"
    scale_param {
        bias_term: true
    }
}

layer {
    bottom: "res4a_branch1"
    bottom: "res4a_branch2c"
    top: "res4a"
    name: "res4a"
    type: "Eltwise"
}

layer {
    bottom: "res4a"
    top: "res4a"
    name: "res4a_relu"
    type: "ReLU"
}

layer {
    bottom: "res4a"
    top: "res4b_branch2a"
    name: "res4b_branch2a"
    type: "Convolution"
    convolution_param {
        num_output: 256
        kernel_size: 1
        pad: 0
        stride: 1
        bias_term: false
    }
}

layer {
    bottom: "res4b_branch2a"
    top: "res4b_branch2a"
    name: "bn4b_branch2a"
    type: "BatchNorm"
    batch_norm_param {
        use_global_stats: false
    }
}

layer {
    bottom: "res4b_branch2a"
    top: "res4b_branch2a"
    name: "scale4b_branch2a"
    type: "Scale"
    scale_param {
        bias_term: true
    }
}

layer {
    bottom: "res4b_branch2a"
    top: "res4b_branch2a"
    name: "res4b_branch2a_relu"
    type: "ReLU"
}

layer {
    bottom: "res4b_branch2a"
    top: "res4b_branch2b"
    name: "res4b_branch2b"
    type: "Convolution"
    convolution_param {
        num_output: 256
        kernel_size: 3
        pad: 1
        stride: 1
        bias_term: false
    }
}

layer {
    bottom: "res4b_branch2b"
    top: "res4b_branch2b"
    name: "bn4b_branch2b"
    type: "BatchNorm"
    batch_norm_param {
        use_global_stats: false
    }
}

layer {
    bottom: "res4b_branch2b"
    top: "res4b_branch2b"
    name: "scale4b_branch2b"
    type: "Scale"
    scale_param {
        bias_term: true
    }
}

layer {
    bottom: "res4b_branch2b"
    top: "res4b_branch2b"
    name: "res4b_branch2b_relu"
    type: "ReLU"
}

layer {
    bottom: "res4b_branch2b"
    top: "res4b_branch2c"
    name: "res4b_branch2c"
    type: "Convolution"
    convolution_param {
        num_output: 1024
        kernel_size: 1
        pad: 0
        stride: 1
        bias_term: false
    }
}

layer {
    bottom: "res4b_branch2c"
    top: "res4b_branch2c"
    name: "bn4b_branch2c"
    type: "BatchNorm"
    batch_norm_param {
        use_global_stats: false
    }
}

layer {
    bottom: "res4b_branch2c"
    top: "res4b_branch2c"
    name: "scale4b_branch2c"
    type: "Scale"
    scale_param {
        bias_term: true
    }
}

layer {
    bottom: "res4a"
    bottom: "res4b_branch2c"
    top: "res4b"
    name: "res4b"
    type: "Eltwise"
}

layer {
    bottom: "res4b"
    top: "res4b"
    name: "res4b_relu"
    type: "ReLU"
}

layer {
    bottom: "res4b"
    top: "res4c_branch2a"
    name: "res4c_branch2a"
    type: "Convolution"
    convolution_param {
        num_output: 256
        kernel_size: 1
        pad: 0
        stride: 1
        bias_term: false
    }
}

layer {
    bottom: "res4c_branch2a"
    top: "res4c_branch2a"
    name: "bn4c_branch2a"
    type: "BatchNorm"
    batch_norm_param {
        use_global_stats: false
    }
}

layer {
    bottom: "res4c_branch2a"
    top: "res4c_branch2a"
    name: "scale4c_branch2a"
    type: "Scale"
    scale_param {
        bias_term: true
    }
}

layer {
    bottom: "res4c_branch2a"
    top: "res4c_branch2a"
    name: "res4c_branch2a_relu"
    type: "ReLU"
}

layer {
    bottom: "res4c_branch2a"
    top: "res4c_branch2b"
    name: "res4c_branch2b"
    type: "Convolution"
    convolution_param {
        num_output: 256
        kernel_size: 3
        pad: 1
        stride: 1
        bias_term: false
    }
}

layer {
    bottom: "res4c_branch2b"
    top: "res4c_branch2b"
    name: "bn4c_branch2b"
    type: "BatchNorm"
    batch_norm_param {
        use_global_stats: false
    }
}

layer {
    bottom: "res4c_branch2b"
    top: "res4c_branch2b"
    name: "scale4c_branch2b"
    type: "Scale"
    scale_param {
        bias_term: true
    }
}

layer {
    bottom: "res4c_branch2b"
    top: "res4c_branch2b"
    name: "res4c_branch2b_relu"
    type: "ReLU"
}

layer {
    bottom: "res4c_branch2b"
    top: "res4c_branch2c"
    name: "res4c_branch2c"
    type: "Convolution"
    convolution_param {
        num_output: 1024
        kernel_size: 1
        pad: 0
        stride: 1
        bias_term: false
    }
}

layer {
    bottom: "res4c_branch2c"
    top: "res4c_branch2c"
    name: "bn4c_branch2c"
    type: "BatchNorm"
    batch_norm_param {
        use_global_stats: false
    }
}

layer {
    bottom: "res4c_branch2c"
    top: "res4c_branch2c"
    name: "scale4c_branch2c"
    type: "Scale"
    scale_param {
        bias_term: true
    }
}

layer {
    bottom: "res4b"
    bottom: "res4c_branch2c"
    top: "res4c"
    name: "res4c"
    type: "Eltwise"
}

layer {
    bottom: "res4c"
    top: "res4c"
    name: "res4c_relu"
    type: "ReLU"
}

layer {
    bottom: "res4c"
    top: "res4d_branch2a"
    name: "res4d_branch2a"
    type: "Convolution"
    convolution_param {
        num_output: 256
        kernel_size: 1
        pad: 0
        stride: 1
        bias_term: false
    }
}

layer {
    bottom: "res4d_branch2a"
    top: "res4d_branch2a"
    name: "bn4d_branch2a"
    type: "BatchNorm"
    batch_norm_param {
        use_global_stats: false
    }
}

layer {
    bottom: "res4d_branch2a"
    top: "res4d_branch2a"
    name: "scale4d_branch2a"
    type: "Scale"
    scale_param {
        bias_term: true
    }
}

layer {
    bottom: "res4d_branch2a"
    top: "res4d_branch2a"
    name: "res4d_branch2a_relu"
    type: "ReLU"
}

layer {
    bottom: "res4d_branch2a"
    top: "res4d_branch2b"
    name: "res4d_branch2b"
    type: "Convolution"
    convolution_param {
        num_output: 256
        kernel_size: 3
        pad: 1
        stride: 1
        bias_term: false
    }
}

layer {
    bottom: "res4d_branch2b"
    top: "res4d_branch2b"
    name: "bn4d_branch2b"
    type: "BatchNorm"
    batch_norm_param {
        use_global_stats: false
    }
}

layer {
    bottom: "res4d_branch2b"
    top: "res4d_branch2b"
    name: "scale4d_branch2b"
    type: "Scale"
    scale_param {
        bias_term: true
    }
}

layer {
    bottom: "res4d_branch2b"
    top: "res4d_branch2b"
    name: "res4d_branch2b_relu"
    type: "ReLU"
}

layer {
    bottom: "res4d_branch2b"
    top: "res4d_branch2c"
    name: "res4d_branch2c"
    type: "Convolution"
    convolution_param {
        num_output: 1024
        kernel_size: 1
        pad: 0
        stride: 1
        bias_term: false
    }
}

layer {
    bottom: "res4d_branch2c"
    top: "res4d_branch2c"
    name: "bn4d_branch2c"
    type: "BatchNorm"
    batch_norm_param {
        use_global_stats: false
    }
}

layer {
    bottom: "res4d_branch2c"
    top: "res4d_branch2c"
    name: "scale4d_branch2c"
    type: "Scale"
    scale_param {
        bias_term: true
    }
}

layer {
    bottom: "res4c"
    bottom: "res4d_branch2c"
    top: "res4d"
    name: "res4d"
    type: "Eltwise"
}

layer {
    bottom: "res4d"
    top: "res4d"
    name: "res4d_relu"
    type: "ReLU"
}

layer {
    bottom: "res4d"
    top: "res4e_branch2a"
    name: "res4e_branch2a"
    type: "Convolution"
    convolution_param {
        num_output: 256
        kernel_size: 1
        pad: 0
        stride: 1
        bias_term: false
    }
}

layer {
    bottom: "res4e_branch2a"
    top: "res4e_branch2a"
    name: "bn4e_branch2a"
    type: "BatchNorm"
    batch_norm_param {
        use_global_stats: false
    }
}

layer {
    bottom: "res4e_branch2a"
    top: "res4e_branch2a"
    name: "scale4e_branch2a"
    type: "Scale"
    scale_param {
        bias_term: true
    }
}

layer {
    bottom: "res4e_branch2a"
    top: "res4e_branch2a"
    name: "res4e_branch2a_relu"
    type: "ReLU"
}

layer {
    bottom: "res4e_branch2a"
    top: "res4e_branch2b"
    name: "res4e_branch2b"
    type: "Convolution"
    convolution_param {
        num_output: 256
        kernel_size: 3
        pad: 1
        stride: 1
        bias_term: false
    }
}

layer {
    bottom: "res4e_branch2b"
    top: "res4e_branch2b"
    name: "bn4e_branch2b"
    type: "BatchNorm"
    batch_norm_param {
        use_global_stats: false
    }
}

layer {
    bottom: "res4e_branch2b"
    top: "res4e_branch2b"
    name: "scale4e_branch2b"
    type: "Scale"
    scale_param {
        bias_term: true
    }
}

layer {
    bottom: "res4e_branch2b"
    top: "res4e_branch2b"
    name: "res4e_branch2b_relu"
    type: "ReLU"
}

layer {
    bottom: "res4e_branch2b"
    top: "res4e_branch2c"
    name: "res4e_branch2c"
    type: "Convolution"
    convolution_param {
        num_output: 1024
        kernel_size: 1
        pad: 0
        stride: 1
        bias_term: false
    }
}

layer {
    bottom: "res4e_branch2c"
    top: "res4e_branch2c"
    name: "bn4e_branch2c"
    type: "BatchNorm"
    batch_norm_param {
        use_global_stats: false
    }
}

layer {
    bottom: "res4e_branch2c"
    top: "res4e_branch2c"
    name: "scale4e_branch2c"
    type: "Scale"
    scale_param {
        bias_term: true
    }
}

layer {
    bottom: "res4d"
    bottom: "res4e_branch2c"
    top: "res4e"
    name: "res4e"
    type: "Eltwise"
}

layer {
    bottom: "res4e"
    top: "res4e"
    name: "res4e_relu"
    type: "ReLU"
}

layer {
    bottom: "res4e"
    top: "res4f_branch2a"
    name: "res4f_branch2a"
    type: "Convolution"
    convolution_param {
        num_output: 256
        kernel_size: 1
        pad: 0
        stride: 1
        bias_term: false
    }
}

layer {
    bottom: "res4f_branch2a"
    top: "res4f_branch2a"
    name: "bn4f_branch2a"
    type: "BatchNorm"
    batch_norm_param {
        use_global_stats: false
    }
}

layer {
    bottom: "res4f_branch2a"
    top: "res4f_branch2a"
    name: "scale4f_branch2a"
    type: "Scale"
    scale_param {
        bias_term: true
    }
}

layer {
    bottom: "res4f_branch2a"
    top: "res4f_branch2a"
    name: "res4f_branch2a_relu"
    type: "ReLU"
}

layer {
    bottom: "res4f_branch2a"
    top: "res4f_branch2b"
    name: "res4f_branch2b"
    type: "Convolution"
    convolution_param {
        num_output: 256
        kernel_size: 3
        pad: 1
        stride: 1
        bias_term: false
    }
}

layer {
    bottom: "res4f_branch2b"
    top: "res4f_branch2b"
    name: "bn4f_branch2b"
    type: "BatchNorm"
    batch_norm_param {
        use_global_stats: false
    }
}

layer {
    bottom: "res4f_branch2b"
    top: "res4f_branch2b"
    name: "scale4f_branch2b"
    type: "Scale"
    scale_param {
        bias_term: true
    }
}

layer {
    bottom: "res4f_branch2b"
    top: "res4f_branch2b"
    name: "res4f_branch2b_relu"
    type: "ReLU"
}

layer {
    bottom: "res4f_branch2b"
    top: "res4f_branch2c"
    name: "res4f_branch2c"
    type: "Convolution"
    convolution_param {
        num_output: 1024
        kernel_size: 1
        pad: 0
        stride: 1
        bias_term: false
    }
}

layer {
    bottom: "res4f_branch2c"
    top: "res4f_branch2c"
    name: "bn4f_branch2c"
    type: "BatchNorm"
    batch_norm_param {
        use_global_stats: false
    }
}

layer {
    bottom: "res4f_branch2c"
    top: "res4f_branch2c"
    name: "scale4f_branch2c"
    type: "Scale"
    scale_param {
        bias_term: true
    }
}

layer {
    bottom: "res4e"
    bottom: "res4f_branch2c"
    top: "res4f"
    name: "res4f"
    type: "Eltwise"
}

layer {
    bottom: "res4f"
    top: "res4f"
    name: "res4f_relu"
    type: "ReLU"
}

layer {
    bottom: "res4f"
    top: "res5a_branch1"
    name: "res5a_branch1"
    type: "Convolution"
    convolution_param {
        num_output: 2048
        kernel_size: 1
        pad: 0
        stride: 2
        bias_term: false
    }
}

layer {
    bottom: "res5a_branch1"
    top: "res5a_branch1"
    name: "bn5a_branch1"
    type: "BatchNorm"
    batch_norm_param {
        use_global_stats: false
    }
}

layer {
    bottom: "res5a_branch1"
    top: "res5a_branch1"
    name: "scale5a_branch1"
    type: "Scale"
    scale_param {
        bias_term: true
    }
}

layer {
    bottom: "res4f"
    top: "res5a_branch2a"
    name: "res5a_branch2a"
    type: "Convolution"
    convolution_param {
        num_output: 512
        kernel_size: 1
        pad: 0
        stride: 2
        bias_term: false
    }
}

layer {
    bottom: "res5a_branch2a"
    top: "res5a_branch2a"
    name: "bn5a_branch2a"
    type: "BatchNorm"
    batch_norm_param {
        use_global_stats: false
    }
}

layer {
    bottom: "res5a_branch2a"
    top: "res5a_branch2a"
    name: "scale5a_branch2a"
    type: "Scale"
    scale_param {
        bias_term: true
    }
}

layer {
    bottom: "res5a_branch2a"
    top: "res5a_branch2a"
    name: "res5a_branch2a_relu"
    type: "ReLU"
}

layer {
    bottom: "res5a_branch2a"
    top: "res5a_branch2b"
    name: "res5a_branch2b"
    type: "Convolution"
    convolution_param {
        num_output: 512
        kernel_size: 3
        pad: 1
        stride: 1
        bias_term: false
    }
}

layer {
    bottom: "res5a_branch2b"
    top: "res5a_branch2b"
    name: "bn5a_branch2b"
    type: "BatchNorm"
    batch_norm_param {
        use_global_stats: false
    }
}

layer {
    bottom: "res5a_branch2b"
    top: "res5a_branch2b"
    name: "scale5a_branch2b"
    type: "Scale"
    scale_param {
        bias_term: true
    }
}

layer {
    bottom: "res5a_branch2b"
    top: "res5a_branch2b"
    name: "res5a_branch2b_relu"
    type: "ReLU"
}

layer {
    bottom: "res5a_branch2b"
    top: "res5a_branch2c"
    name: "res5a_branch2c"
    type: "Convolution"
    convolution_param {
        num_output: 2048
        kernel_size: 1
        pad: 0
        stride: 1
        bias_term: false
    }
}

layer {
    bottom: "res5a_branch2c"
    top: "res5a_branch2c"
    name: "bn5a_branch2c"
    type: "BatchNorm"
    batch_norm_param {
        use_global_stats: false
    }
}

layer {
    bottom: "res5a_branch2c"
    top: "res5a_branch2c"
    name: "scale5a_branch2c"
    type: "Scale"
    scale_param {
        bias_term: true
    }
}

layer {
    bottom: "res5a_branch1"
    bottom: "res5a_branch2c"
    top: "res5a"
    name: "res5a"
    type: "Eltwise"
}

layer {
    bottom: "res5a"
    top: "res5a"
    name: "res5a_relu"
    type: "ReLU"
}

layer {
    bottom: "res5a"
    top: "res5b_branch2a"
    name: "res5b_branch2a"
    type: "Convolution"
    convolution_param {
        num_output: 512
        kernel_size: 1
        pad: 0
        stride: 1
        bias_term: false
    }
}

layer {
    bottom: "res5b_branch2a"
    top: "res5b_branch2a"
    name: "bn5b_branch2a"
    type: "BatchNorm"
    batch_norm_param {
        use_global_stats: false
    }
}

layer {
    bottom: "res5b_branch2a"
    top: "res5b_branch2a"
    name: "scale5b_branch2a"
    type: "Scale"
    scale_param {
        bias_term: true
    }
}

layer {
    bottom: "res5b_branch2a"
    top: "res5b_branch2a"
    name: "res5b_branch2a_relu"
    type: "ReLU"
}

layer {
    bottom: "res5b_branch2a"
    top: "res5b_branch2b"
    name: "res5b_branch2b"
    type: "Convolution"
    convolution_param {
        num_output: 512
        kernel_size: 3
        pad: 1
        stride: 1
        bias_term: false
    }
}

layer {
    bottom: "res5b_branch2b"
    top: "res5b_branch2b"
    name: "bn5b_branch2b"
    type: "BatchNorm"
    batch_norm_param {
        use_global_stats: false
    }
}

layer {
    bottom: "res5b_branch2b"
    top: "res5b_branch2b"
    name: "scale5b_branch2b"
    type: "Scale"
    scale_param {
        bias_term: true
    }
}

layer {
    bottom: "res5b_branch2b"
    top: "res5b_branch2b"
    name: "res5b_branch2b_relu"
    type: "ReLU"
}

layer {
    bottom: "res5b_branch2b"
    top: "res5b_branch2c"
    name: "res5b_branch2c"
    type: "Convolution"
    convolution_param {
        num_output: 2048
        kernel_size: 1
        pad: 0
        stride: 1
        bias_term: false
    }
}

layer {
    bottom: "res5b_branch2c"
    top: "res5b_branch2c"
    name: "bn5b_branch2c"
    type: "BatchNorm"
    batch_norm_param {
        use_global_stats: false
    }
}

layer {
    bottom: "res5b_branch2c"
    top: "res5b_branch2c"
    name: "scale5b_branch2c"
    type: "Scale"
    scale_param {
        bias_term: true
    }
}

layer {
    bottom: "res5a"
    bottom: "res5b_branch2c"
    top: "res5b"
    name: "res5b"
    type: "Eltwise"
}

layer {
    bottom: "res5b"
    top: "res5b"
    name: "res5b_relu"
    type: "ReLU"
}

layer {
    bottom: "res5b"
    top: "res5c_branch2a"
    name: "res5c_branch2a"
    type: "Convolution"
    convolution_param {
        num_output: 512
        kernel_size: 1
        pad: 0
        stride: 1
        bias_term: false
    }
}

layer {
    bottom: "res5c_branch2a"
    top: "res5c_branch2a"
    name: "bn5c_branch2a"
    type: "BatchNorm"
    batch_norm_param {
        use_global_stats: false
    }
}

layer {
    bottom: "res5c_branch2a"
    top: "res5c_branch2a"
    name: "scale5c_branch2a"
    type: "Scale"
    scale_param {
        bias_term: true
    }
}

layer {
    bottom: "res5c_branch2a"
    top: "res5c_branch2a"
    name: "res5c_branch2a_relu"
    type: "ReLU"
}

layer {
    bottom: "res5c_branch2a"
    top: "res5c_branch2b"
    name: "res5c_branch2b"
    type: "Convolution"
    convolution_param {
        num_output: 512
        kernel_size: 3
        pad: 1
        stride: 1
        bias_term: false
    }
}

layer {
    bottom: "res5c_branch2b"
    top: "res5c_branch2b"
    name: "bn5c_branch2b"
    type: "BatchNorm"
    batch_norm_param {
        use_global_stats: false
    }
}

layer {
    bottom: "res5c_branch2b"
    top: "res5c_branch2b"
    name: "scale5c_branch2b"
    type: "Scale"
    scale_param {
        bias_term: true
    }
}

layer {
    bottom: "res5c_branch2b"
    top: "res5c_branch2b"
    name: "res5c_branch2b_relu"
    type: "ReLU"
}

layer {
    bottom: "res5c_branch2b"
    top: "res5c_branch2c"
    name: "res5c_branch2c"
    type: "Convolution"
    convolution_param {
        num_output: 2048
        kernel_size: 1
        pad: 0
        stride: 1
        bias_term: false
    }
}

layer {
    bottom: "res5c_branch2c"
    top: "res5c_branch2c"
    name: "bn5c_branch2c"
    type: "BatchNorm"
    batch_norm_param {
        use_global_stats: false
    }
}

layer {
    bottom: "res5c_branch2c"
    top: "res5c_branch2c"
    name: "scale5c_branch2c"
    type: "Scale"
    scale_param {
        bias_term: true
    }
}

layer {
    bottom: "res5b"
    bottom: "res5c_branch2c"
    top: "res5c"
    name: "res5c"
    type: "Eltwise"
}

layer {
    bottom: "res5c"
    top: "res5c"
    name: "res5c_relu"
    type: "ReLU"
}

layer {
    bottom: "res5c"
    top: "pool5"
    name: "pool5"
    type: "Pooling"
    pooling_param {
        kernel_size: 7
        stride: 1
        pool: AVE
    }
}

layer {
    bottom: "pool5"
    top: "fc204"
    name: "fc204"
    type: "InnerProduct"
    param {
        lr_mult: 1
        decay_mult: 2
    }
    inner_product_param {
        num_output: 204
    }
}
layer {
  name: "accuracy-1"
  type: "Accuracy"
  bottom: "fc204"
  bottom: "label"
  top: "accuracy-1"
  include {
    phase: TEST
  }
}
layer {
  name: "accuracy-5"
  type: "Accuracy"
  bottom: "fc204"
  bottom: "label"
  top: "accuracy-5"
  include {
    phase: TEST
  }
  accuracy_param {
    top_k:5
  }
}
layer {
  name: "loss"
  type: "SoftmaxWithLoss"
  bottom: "fc204"
  bottom: "label"
  top: "loss"
}
#layer {
#   bottom: "fc204"
#   top: "prob"
#   name: "prob"
#   type: "Softmax"
#}

测试用的网络文件:ResNet-50-val.prototxt

name: "ResNet-50"

layer {
    name: "data"
    type: "ImageData"
    top: "data"
    top: "label"
    include {
        phase: TEST
    }
    transform_param {
        #scale: 0.00390625
        crop_size: 224
        mean_value: 104
        mean_value: 117
        mean_value: 123
        mirror: false
    }
    image_data_param {
      new_width:256
      new_height:256
      shuffle: false
      source: "/export/plustang/data/tuan_style_data/tuan_val.txt"
      root_folder : "/export/plustang/data/tuan_style_data/imgs/"
      batch_size: 32
    }
}
#layer {
#  name: "data"
#  type: "Data"
#  top: "data"
#  top: "label"
#  include {
#    phase: TRAIN
#  }
#  transform_param {
#    crop_size: 224
#    mean_value: 104
#    mean_value: 117
#    mean_value: 123
#    mirror: true
#    gamma_color_transform: true
#    gamma_left: 0.8 #0.5
#    gamma_right: 2.0 #1.5
#    gamma_step_num: 8 #4
#    brightness:true
#    brightness_alpha_left: 0.7
#    brightness_alpha_right: 1.2
#    brightness_beta_left: -5.0
#    brightness_beta_right: 5.0
#    brightness_alpha_num: 4
#    brightness_beta_num: 4
#    resize:true
#    resize_ratio:14
#    rotate:true
#  }
#  data_param {
#    source: "/export/plustang/data/tuan_style_data/train_lmdb"
#    need_data_augment:true
#    batch_size: 28
#    backend: LMDB
#  }
#}
#layer {
#  name: "data"
#  type: "Data"
#  top: "data"
#  top: "label"
#  include {
#    phase: TEST
#  }
#  transform_param {
#    crop_size: 224
#    mean_value: 104
#    mean_value: 117
#    mean_value: 123
#    mirror: false
#  }
#  data_param {
#    source: "/export/plustang/data/tuan_style_data/val_lmdb"
#    need_data_augment:false
#    batch_size: 1
#    backend: LMDB
#  }
#}
layer {
    bottom: "data"
    top: "conv1"
    name: "conv1"
    type: "Convolution"
    convolution_param {
        num_output: 64
        kernel_size: 7
        pad: 3
        stride: 2
    }
}

layer {
    bottom: "conv1"
    top: "conv1"
    name: "bn_conv1"
    type: "BatchNorm"
    batch_norm_param {
        use_global_stats: true
    }
}

layer {
    bottom: "conv1"
    top: "conv1"
    name: "scale_conv1"
    type: "Scale"
    scale_param {
        bias_term: true
    }
}

layer {
    bottom: "conv1"
    top: "conv1"
    name: "conv1_relu"
    type: "ReLU"
}

layer {
    bottom: "conv1"
    top: "pool1"
    name: "pool1"
    type: "Pooling"
    pooling_param {
        kernel_size: 3
        stride: 2
        pool: MAX
    }
}

layer {
    bottom: "pool1"
    top: "res2a_branch1"
    name: "res2a_branch1"
    type: "Convolution"
    convolution_param {
        num_output: 256
        kernel_size: 1
        pad: 0
        stride: 1
        bias_term: false
    }
}

layer {
    bottom: "res2a_branch1"
    top: "res2a_branch1"
    name: "bn2a_branch1"
    type: "BatchNorm"
    batch_norm_param {
        use_global_stats: true
    }
}

layer {
    bottom: "res2a_branch1"
    top: "res2a_branch1"
    name: "scale2a_branch1"
    type: "Scale"
    scale_param {
        bias_term: true
    }
}

layer {
    bottom: "pool1"
    top: "res2a_branch2a"
    name: "res2a_branch2a"
    type: "Convolution"
    convolution_param {
        num_output: 64
        kernel_size: 1
        pad: 0
        stride: 1
        bias_term: false
    }
}

layer {
    bottom: "res2a_branch2a"
    top: "res2a_branch2a"
    name: "bn2a_branch2a"
    type: "BatchNorm"
    batch_norm_param {
        use_global_stats: true
    }
}

layer {
    bottom: "res2a_branch2a"
    top: "res2a_branch2a"
    name: "scale2a_branch2a"
    type: "Scale"
    scale_param {
        bias_term: true
    }
}

layer {
    bottom: "res2a_branch2a"
    top: "res2a_branch2a"
    name: "res2a_branch2a_relu"
    type: "ReLU"
}

layer {
    bottom: "res2a_branch2a"
    top: "res2a_branch2b"
    name: "res2a_branch2b"
    type: "Convolution"
    convolution_param {
        num_output: 64
        kernel_size: 3
        pad: 1
        stride: 1
        bias_term: false
    }
}

layer {
    bottom: "res2a_branch2b"
    top: "res2a_branch2b"
    name: "bn2a_branch2b"
    type: "BatchNorm"
    batch_norm_param {
        use_global_stats: true
    }
}

layer {
    bottom: "res2a_branch2b"
    top: "res2a_branch2b"
    name: "scale2a_branch2b"
    type: "Scale"
    scale_param {
        bias_term: true
    }
}

layer {
    bottom: "res2a_branch2b"
    top: "res2a_branch2b"
    name: "res2a_branch2b_relu"
    type: "ReLU"
}

layer {
    bottom: "res2a_branch2b"
    top: "res2a_branch2c"
    name: "res2a_branch2c"
    type: "Convolution"
    convolution_param {
        num_output: 256
        kernel_size: 1
        pad: 0
        stride: 1
        bias_term: false
    }
}

layer {
    bottom: "res2a_branch2c"
    top: "res2a_branch2c"
    name: "bn2a_branch2c"
    type: "BatchNorm"
    batch_norm_param {
        use_global_stats: true
    }
}

layer {
    bottom: "res2a_branch2c"
    top: "res2a_branch2c"
    name: "scale2a_branch2c"
    type: "Scale"
    scale_param {
        bias_term: true
    }
}

layer {
    bottom: "res2a_branch1"
    bottom: "res2a_branch2c"
    top: "res2a"
    name: "res2a"
    type: "Eltwise"
}

layer {
    bottom: "res2a"
    top: "res2a"
    name: "res2a_relu"
    type: "ReLU"
}

layer {
    bottom: "res2a"
    top: "res2b_branch2a"
    name: "res2b_branch2a"
    type: "Convolution"
    convolution_param {
        num_output: 64
        kernel_size: 1
        pad: 0
        stride: 1
        bias_term: false
    }
}

layer {
    bottom: "res2b_branch2a"
    top: "res2b_branch2a"
    name: "bn2b_branch2a"
    type: "BatchNorm"
    batch_norm_param {
        use_global_stats: true
    }
}

layer {
    bottom: "res2b_branch2a"
    top: "res2b_branch2a"
    name: "scale2b_branch2a"
    type: "Scale"
    scale_param {
        bias_term: true
    }
}

layer {
    bottom: "res2b_branch2a"
    top: "res2b_branch2a"
    name: "res2b_branch2a_relu"
    type: "ReLU"
}

layer {
    bottom: "res2b_branch2a"
    top: "res2b_branch2b"
    name: "res2b_branch2b"
    type: "Convolution"
    convolution_param {
        num_output: 64
        kernel_size: 3
        pad: 1
        stride: 1
        bias_term: false
    }
}

layer {
    bottom: "res2b_branch2b"
    top: "res2b_branch2b"
    name: "bn2b_branch2b"
    type: "BatchNorm"
    batch_norm_param {
        use_global_stats: true
    }
}

layer {
    bottom: "res2b_branch2b"
    top: "res2b_branch2b"
    name: "scale2b_branch2b"
    type: "Scale"
    scale_param {
        bias_term: true
    }
}

layer {
    bottom: "res2b_branch2b"
    top: "res2b_branch2b"
    name: "res2b_branch2b_relu"
    type: "ReLU"
}

layer {
    bottom: "res2b_branch2b"
    top: "res2b_branch2c"
    name: "res2b_branch2c"
    type: "Convolution"
    convolution_param {
        num_output: 256
        kernel_size: 1
        pad: 0
        stride: 1
        bias_term: false
    }
}

layer {
    bottom: "res2b_branch2c"
    top: "res2b_branch2c"
    name: "bn2b_branch2c"
    type: "BatchNorm"
    batch_norm_param {
        use_global_stats: true
    }
}

layer {
    bottom: "res2b_branch2c"
    top: "res2b_branch2c"
    name: "scale2b_branch2c"
    type: "Scale"
    scale_param {
        bias_term: true
    }
}

layer {
    bottom: "res2a"
    bottom: "res2b_branch2c"
    top: "res2b"
    name: "res2b"
    type: "Eltwise"
}

layer {
    bottom: "res2b"
    top: "res2b"
    name: "res2b_relu"
    type: "ReLU"
}

layer {
    bottom: "res2b"
    top: "res2c_branch2a"
    name: "res2c_branch2a"
    type: "Convolution"
    convolution_param {
        num_output: 64
        kernel_size: 1
        pad: 0
        stride: 1
        bias_term: false
    }
}

layer {
    bottom: "res2c_branch2a"
    top: "res2c_branch2a"
    name: "bn2c_branch2a"
    type: "BatchNorm"
    batch_norm_param {
        use_global_stats: true
    }
}

layer {
    bottom: "res2c_branch2a"
    top: "res2c_branch2a"
    name: "scale2c_branch2a"
    type: "Scale"
    scale_param {
        bias_term: true
    }
}

layer {
    bottom: "res2c_branch2a"
    top: "res2c_branch2a"
    name: "res2c_branch2a_relu"
    type: "ReLU"
}

layer {
    bottom: "res2c_branch2a"
    top: "res2c_branch2b"
    name: "res2c_branch2b"
    type: "Convolution"
    convolution_param {
        num_output: 64
        kernel_size: 3
        pad: 1
        stride: 1
        bias_term: false
    }
}

layer {
    bottom: "res2c_branch2b"
    top: "res2c_branch2b"
    name: "bn2c_branch2b"
    type: "BatchNorm"
    batch_norm_param {
        use_global_stats: true
    }
}

layer {
    bottom: "res2c_branch2b"
    top: "res2c_branch2b"
    name: "scale2c_branch2b"
    type: "Scale"
    scale_param {
        bias_term: true
    }
}

layer {
    bottom: "res2c_branch2b"
    top: "res2c_branch2b"
    name: "res2c_branch2b_relu"
    type: "ReLU"
}

layer {
    bottom: "res2c_branch2b"
    top: "res2c_branch2c"
    name: "res2c_branch2c"
    type: "Convolution"
    convolution_param {
        num_output: 256
        kernel_size: 1
        pad: 0
        stride: 1
        bias_term: false
    }
}

layer {
    bottom: "res2c_branch2c"
    top: "res2c_branch2c"
    name: "bn2c_branch2c"
    type: "BatchNorm"
    batch_norm_param {
        use_global_stats: true
    }
}

layer {
    bottom: "res2c_branch2c"
    top: "res2c_branch2c"
    name: "scale2c_branch2c"
    type: "Scale"
    scale_param {
        bias_term: true
    }
}

layer {
    bottom: "res2b"
    bottom: "res2c_branch2c"
    top: "res2c"
    name: "res2c"
    type: "Eltwise"
}

layer {
    bottom: "res2c"
    top: "res2c"
    name: "res2c_relu"
    type: "ReLU"
}

layer {
    bottom: "res2c"
    top: "res3a_branch1"
    name: "res3a_branch1"
    type: "Convolution"
    convolution_param {
        num_output: 512
        kernel_size: 1
        pad: 0
        stride: 2
        bias_term: false
    }
}

layer {
    bottom: "res3a_branch1"
    top: "res3a_branch1"
    name: "bn3a_branch1"
    type: "BatchNorm"
    batch_norm_param {
        use_global_stats: true
    }
}

layer {
    bottom: "res3a_branch1"
    top: "res3a_branch1"
    name: "scale3a_branch1"
    type: "Scale"
    scale_param {
        bias_term: true
    }
}

layer {
    bottom: "res2c"
    top: "res3a_branch2a"
    name: "res3a_branch2a"
    type: "Convolution"
    convolution_param {
        num_output: 128
        kernel_size: 1
        pad: 0
        stride: 2
        bias_term: false
    }
}

layer {
    bottom: "res3a_branch2a"
    top: "res3a_branch2a"
    name: "bn3a_branch2a"
    type: "BatchNorm"
    batch_norm_param {
        use_global_stats: true
    }
}

layer {
    bottom: "res3a_branch2a"
    top: "res3a_branch2a"
    name: "scale3a_branch2a"
    type: "Scale"
    scale_param {
        bias_term: true
    }
}

layer {
    bottom: "res3a_branch2a"
    top: "res3a_branch2a"
    name: "res3a_branch2a_relu"
    type: "ReLU"
}

layer {
    bottom: "res3a_branch2a"
    top: "res3a_branch2b"
    name: "res3a_branch2b"
    type: "Convolution"
    convolution_param {
        num_output: 128
        kernel_size: 3
        pad: 1
        stride: 1
        bias_term: false
    }
}

layer {
    bottom: "res3a_branch2b"
    top: "res3a_branch2b"
    name: "bn3a_branch2b"
    type: "BatchNorm"
    batch_norm_param {
        use_global_stats: true
    }
}

layer {
    bottom: "res3a_branch2b"
    top: "res3a_branch2b"
    name: "scale3a_branch2b"
    type: "Scale"
    scale_param {
        bias_term: true
    }
}

layer {
    bottom: "res3a_branch2b"
    top: "res3a_branch2b"
    name: "res3a_branch2b_relu"
    type: "ReLU"
}

layer {
    bottom: "res3a_branch2b"
    top: "res3a_branch2c"
    name: "res3a_branch2c"
    type: "Convolution"
    convolution_param {
        num_output: 512
        kernel_size: 1
        pad: 0
        stride: 1
        bias_term: false
    }
}

layer {
    bottom: "res3a_branch2c"
    top: "res3a_branch2c"
    name: "bn3a_branch2c"
    type: "BatchNorm"
    batch_norm_param {
        use_global_stats: true
    }
}

layer {
    bottom: "res3a_branch2c"
    top: "res3a_branch2c"
    name: "scale3a_branch2c"
    type: "Scale"
    scale_param {
        bias_term: true
    }
}

layer {
    bottom: "res3a_branch1"
    bottom: "res3a_branch2c"
    top: "res3a"
    name: "res3a"
    type: "Eltwise"
}

layer {
    bottom: "res3a"
    top: "res3a"
    name: "res3a_relu"
    type: "ReLU"
}

layer {
    bottom: "res3a"
    top: "res3b_branch2a"
    name: "res3b_branch2a"
    type: "Convolution"
    convolution_param {
        num_output: 128
        kernel_size: 1
        pad: 0
        stride: 1
        bias_term: false
    }
}

layer {
    bottom: "res3b_branch2a"
    top: "res3b_branch2a"
    name: "bn3b_branch2a"
    type: "BatchNorm"
    batch_norm_param {
        use_global_stats: true
    }
}

layer {
    bottom: "res3b_branch2a"
    top: "res3b_branch2a"
    name: "scale3b_branch2a"
    type: "Scale"
    scale_param {
        bias_term: true
    }
}

layer {
    bottom: "res3b_branch2a"
    top: "res3b_branch2a"
    name: "res3b_branch2a_relu"
    type: "ReLU"
}

layer {
    bottom: "res3b_branch2a"
    top: "res3b_branch2b"
    name: "res3b_branch2b"
    type: "Convolution"
    convolution_param {
        num_output: 128
        kernel_size: 3
        pad: 1
        stride: 1
        bias_term: false
    }
}

layer {
    bottom: "res3b_branch2b"
    top: "res3b_branch2b"
    name: "bn3b_branch2b"
    type: "BatchNorm"
    batch_norm_param {
        use_global_stats: true
    }
}

layer {
    bottom: "res3b_branch2b"
    top: "res3b_branch2b"
    name: "scale3b_branch2b"
    type: "Scale"
    scale_param {
        bias_term: true
    }
}

layer {
    bottom: "res3b_branch2b"
    top: "res3b_branch2b"
    name: "res3b_branch2b_relu"
    type: "ReLU"
}

layer {
    bottom: "res3b_branch2b"
    top: "res3b_branch2c"
    name: "res3b_branch2c"
    type: "Convolution"
    convolution_param {
        num_output: 512
        kernel_size: 1
        pad: 0
        stride: 1
        bias_term: false
    }
}

layer {
    bottom: "res3b_branch2c"
    top: "res3b_branch2c"
    name: "bn3b_branch2c"
    type: "BatchNorm"
    batch_norm_param {
        use_global_stats: true
    }
}

layer {
    bottom: "res3b_branch2c"
    top: "res3b_branch2c"
    name: "scale3b_branch2c"
    type: "Scale"
    scale_param {
        bias_term: true
    }
}

layer {
    bottom: "res3a"
    bottom: "res3b_branch2c"
    top: "res3b"
    name: "res3b"
    type: "Eltwise"
}

layer {
    bottom: "res3b"
    top: "res3b"
    name: "res3b_relu"
    type: "ReLU"
}

layer {
    bottom: "res3b"
    top: "res3c_branch2a"
    name: "res3c_branch2a"
    type: "Convolution"
    convolution_param {
        num_output: 128
        kernel_size: 1
        pad: 0
        stride: 1
        bias_term: false
    }
}

layer {
    bottom: "res3c_branch2a"
    top: "res3c_branch2a"
    name: "bn3c_branch2a"
    type: "BatchNorm"
    batch_norm_param {
        use_global_stats: true
    }
}

layer {
    bottom: "res3c_branch2a"
    top: "res3c_branch2a"
    name: "scale3c_branch2a"
    type: "Scale"
    scale_param {
        bias_term: true
    }
}

layer {
    bottom: "res3c_branch2a"
    top: "res3c_branch2a"
    name: "res3c_branch2a_relu"
    type: "ReLU"
}

layer {
    bottom: "res3c_branch2a"
    top: "res3c_branch2b"
    name: "res3c_branch2b"
    type: "Convolution"
    convolution_param {
        num_output: 128
        kernel_size: 3
        pad: 1
        stride: 1
        bias_term: false
    }
}

layer {
    bottom: "res3c_branch2b"
    top: "res3c_branch2b"
    name: "bn3c_branch2b"
    type: "BatchNorm"
    batch_norm_param {
        use_global_stats: true
    }
}

layer {
    bottom: "res3c_branch2b"
    top: "res3c_branch2b"
    name: "scale3c_branch2b"
    type: "Scale"
    scale_param {
        bias_term: true
    }
}

layer {
    bottom: "res3c_branch2b"
    top: "res3c_branch2b"
    name: "res3c_branch2b_relu"
    type: "ReLU"
}

layer {
    bottom: "res3c_branch2b"
    top: "res3c_branch2c"
    name: "res3c_branch2c"
    type: "Convolution"
    convolution_param {
        num_output: 512
        kernel_size: 1
        pad: 0
        stride: 1
        bias_term: false
    }
}

layer {
    bottom: "res3c_branch2c"
    top: "res3c_branch2c"
    name: "bn3c_branch2c"
    type: "BatchNorm"
    batch_norm_param {
        use_global_stats: true
    }
}

layer {
    bottom: "res3c_branch2c"
    top: "res3c_branch2c"
    name: "scale3c_branch2c"
    type: "Scale"
    scale_param {
        bias_term: true
    }
}

layer {
    bottom: "res3b"
    bottom: "res3c_branch2c"
    top: "res3c"
    name: "res3c"
    type: "Eltwise"
}

layer {
    bottom: "res3c"
    top: "res3c"
    name: "res3c_relu"
    type: "ReLU"
}

layer {
    bottom: "res3c"
    top: "res3d_branch2a"
    name: "res3d_branch2a"
    type: "Convolution"
    convolution_param {
        num_output: 128
        kernel_size: 1
        pad: 0
        stride: 1
        bias_term: false
    }
}

layer {
    bottom: "res3d_branch2a"
    top: "res3d_branch2a"
    name: "bn3d_branch2a"
    type: "BatchNorm"
    batch_norm_param {
        use_global_stats: true
    }
}

layer {
    bottom: "res3d_branch2a"
    top: "res3d_branch2a"
    name: "scale3d_branch2a"
    type: "Scale"
    scale_param {
        bias_term: true
    }
}

layer {
    bottom: "res3d_branch2a"
    top: "res3d_branch2a"
    name: "res3d_branch2a_relu"
    type: "ReLU"
}

layer {
    bottom: "res3d_branch2a"
    top: "res3d_branch2b"
    name: "res3d_branch2b"
    type: "Convolution"
    convolution_param {
        num_output: 128
        kernel_size: 3
        pad: 1
        stride: 1
        bias_term: false
    }
}

layer {
    bottom: "res3d_branch2b"
    top: "res3d_branch2b"
    name: "bn3d_branch2b"
    type: "BatchNorm"
    batch_norm_param {
        use_global_stats: true
    }
}

layer {
    bottom: "res3d_branch2b"
    top: "res3d_branch2b"
    name: "scale3d_branch2b"
    type: "Scale"
    scale_param {
        bias_term: true
    }
}

layer {
    bottom: "res3d_branch2b"
    top: "res3d_branch2b"
    name: "res3d_branch2b_relu"
    type: "ReLU"
}

layer {
    bottom: "res3d_branch2b"
    top: "res3d_branch2c"
    name: "res3d_branch2c"
    type: "Convolution"
    convolution_param {
        num_output: 512
        kernel_size: 1
        pad: 0
        stride: 1
        bias_term: false
    }
}

layer {
    bottom: "res3d_branch2c"
    top: "res3d_branch2c"
    name: "bn3d_branch2c"
    type: "BatchNorm"
    batch_norm_param {
        use_global_stats: true
    }
}

layer {
    bottom: "res3d_branch2c"
    top: "res3d_branch2c"
    name: "scale3d_branch2c"
    type: "Scale"
    scale_param {
        bias_term: true
    }
}

layer {
    bottom: "res3c"
    bottom: "res3d_branch2c"
    top: "res3d"
    name: "res3d"
    type: "Eltwise"
}

layer {
    bottom: "res3d"
    top: "res3d"
    name: "res3d_relu"
    type: "ReLU"
}

layer {
    bottom: "res3d"
    top: "res4a_branch1"
    name: "res4a_branch1"
    type: "Convolution"
    convolution_param {
        num_output: 1024
        kernel_size: 1
        pad: 0
        stride: 2
        bias_term: false
    }
}

layer {
    bottom: "res4a_branch1"
    top: "res4a_branch1"
    name: "bn4a_branch1"
    type: "BatchNorm"
    batch_norm_param {
        use_global_stats: true
    }
}

layer {
    bottom: "res4a_branch1"
    top: "res4a_branch1"
    name: "scale4a_branch1"
    type: "Scale"
    scale_param {
        bias_term: true
    }
}

layer {
    bottom: "res3d"
    top: "res4a_branch2a"
    name: "res4a_branch2a"
    type: "Convolution"
    convolution_param {
        num_output: 256
        kernel_size: 1
        pad: 0
        stride: 2
        bias_term: false
    }
}

layer {
    bottom: "res4a_branch2a"
    top: "res4a_branch2a"
    name: "bn4a_branch2a"
    type: "BatchNorm"
    batch_norm_param {
        use_global_stats: true
    }
}

layer {
    bottom: "res4a_branch2a"
    top: "res4a_branch2a"
    name: "scale4a_branch2a"
    type: "Scale"
    scale_param {
        bias_term: true
    }
}

layer {
    bottom: "res4a_branch2a"
    top: "res4a_branch2a"
    name: "res4a_branch2a_relu"
    type: "ReLU"
}

layer {
    bottom: "res4a_branch2a"
    top: "res4a_branch2b"
    name: "res4a_branch2b"
    type: "Convolution"
    convolution_param {
        num_output: 256
        kernel_size: 3
        pad: 1
        stride: 1
        bias_term: false
    }
}

layer {
    bottom: "res4a_branch2b"
    top: "res4a_branch2b"
    name: "bn4a_branch2b"
    type: "BatchNorm"
    batch_norm_param {
        use_global_stats: true
    }
}

layer {
    bottom: "res4a_branch2b"
    top: "res4a_branch2b"
    name: "scale4a_branch2b"
    type: "Scale"
    scale_param {
        bias_term: true
    }
}

layer {
    bottom: "res4a_branch2b"
    top: "res4a_branch2b"
    name: "res4a_branch2b_relu"
    type: "ReLU"
}

layer {
    bottom: "res4a_branch2b"
    top: "res4a_branch2c"
    name: "res4a_branch2c"
    type: "Convolution"
    convolution_param {
        num_output: 1024
        kernel_size: 1
        pad: 0
        stride: 1
        bias_term: false
    }
}

layer {
    bottom: "res4a_branch2c"
    top: "res4a_branch2c"
    name: "bn4a_branch2c"
    type: "BatchNorm"
    batch_norm_param {
        use_global_stats: true
    }
}

layer {
    bottom: "res4a_branch2c"
    top: "res4a_branch2c"
    name: "scale4a_branch2c"
    type: "Scale"
    scale_param {
        bias_term: true
    }
}

layer {
    bottom: "res4a_branch1"
    bottom: "res4a_branch2c"
    top: "res4a"
    name: "res4a"
    type: "Eltwise"
}

layer {
    bottom: "res4a"
    top: "res4a"
    name: "res4a_relu"
    type: "ReLU"
}

layer {
    bottom: "res4a"
    top: "res4b_branch2a"
    name: "res4b_branch2a"
    type: "Convolution"
    convolution_param {
        num_output: 256
        kernel_size: 1
        pad: 0
        stride: 1
        bias_term: false
    }
}

layer {
    bottom: "res4b_branch2a"
    top: "res4b_branch2a"
    name: "bn4b_branch2a"
    type: "BatchNorm"
    batch_norm_param {
        use_global_stats: true
    }
}

layer {
    bottom: "res4b_branch2a"
    top: "res4b_branch2a"
    name: "scale4b_branch2a"
    type: "Scale"
    scale_param {
        bias_term: true
    }
}

layer {
    bottom: "res4b_branch2a"
    top: "res4b_branch2a"
    name: "res4b_branch2a_relu"
    type: "ReLU"
}

layer {
    bottom: "res4b_branch2a"
    top: "res4b_branch2b"
    name: "res4b_branch2b"
    type: "Convolution"
    convolution_param {
        num_output: 256
        kernel_size: 3
        pad: 1
        stride: 1
        bias_term: false
    }
}

layer {
    bottom: "res4b_branch2b"
    top: "res4b_branch2b"
    name: "bn4b_branch2b"
    type: "BatchNorm"
    batch_norm_param {
        use_global_stats: true
    }
}

layer {
    bottom: "res4b_branch2b"
    top: "res4b_branch2b"
    name: "scale4b_branch2b"
    type: "Scale"
    scale_param {
        bias_term: true
    }
}

layer {
    bottom: "res4b_branch2b"
    top: "res4b_branch2b"
    name: "res4b_branch2b_relu"
    type: "ReLU"
}

layer {
    bottom: "res4b_branch2b"
    top: "res4b_branch2c"
    name: "res4b_branch2c"
    type: "Convolution"
    convolution_param {
        num_output: 1024
        kernel_size: 1
        pad: 0
        stride: 1
        bias_term: false
    }
}

layer {
    bottom: "res4b_branch2c"
    top: "res4b_branch2c"
    name: "bn4b_branch2c"
    type: "BatchNorm"
    batch_norm_param {
        use_global_stats: true
    }
}

layer {
    bottom: "res4b_branch2c"
    top: "res4b_branch2c"
    name: "scale4b_branch2c"
    type: "Scale"
    scale_param {
        bias_term: true
    }
}

layer {
    bottom: "res4a"
    bottom: "res4b_branch2c"
    top: "res4b"
    name: "res4b"
    type: "Eltwise"
}

layer {
    bottom: "res4b"
    top: "res4b"
    name: "res4b_relu"
    type: "ReLU"
}

layer {
    bottom: "res4b"
    top: "res4c_branch2a"
    name: "res4c_branch2a"
    type: "Convolution"
    convolution_param {
        num_output: 256
        kernel_size: 1
        pad: 0
        stride: 1
        bias_term: false
    }
}

layer {
    bottom: "res4c_branch2a"
    top: "res4c_branch2a"
    name: "bn4c_branch2a"
    type: "BatchNorm"
    batch_norm_param {
        use_global_stats: true
    }
}

layer {
    bottom: "res4c_branch2a"
    top: "res4c_branch2a"
    name: "scale4c_branch2a"
    type: "Scale"
    scale_param {
        bias_term: true
    }
}

layer {
    bottom: "res4c_branch2a"
    top: "res4c_branch2a"
    name: "res4c_branch2a_relu"
    type: "ReLU"
}

layer {
    bottom: "res4c_branch2a"
    top: "res4c_branch2b"
    name: "res4c_branch2b"
    type: "Convolution"
    convolution_param {
        num_output: 256
        kernel_size: 3
        pad: 1
        stride: 1
        bias_term: false
    }
}

layer {
    bottom: "res4c_branch2b"
    top: "res4c_branch2b"
    name: "bn4c_branch2b"
    type: "BatchNorm"
    batch_norm_param {
        use_global_stats: true
    }
}

layer {
    bottom: "res4c_branch2b"
    top: "res4c_branch2b"
    name: "scale4c_branch2b"
    type: "Scale"
    scale_param {
        bias_term: true
    }
}

layer {
    bottom: "res4c_branch2b"
    top: "res4c_branch2b"
    name: "res4c_branch2b_relu"
    type: "ReLU"
}

layer {
    bottom: "res4c_branch2b"
    top: "res4c_branch2c"
    name: "res4c_branch2c"
    type: "Convolution"
    convolution_param {
        num_output: 1024
        kernel_size: 1
        pad: 0
        stride: 1
        bias_term: false
    }
}

layer {
    bottom: "res4c_branch2c"
    top: "res4c_branch2c"
    name: "bn4c_branch2c"
    type: "BatchNorm"
    batch_norm_param {
        use_global_stats: true
    }
}

layer {
    bottom: "res4c_branch2c"
    top: "res4c_branch2c"
    name: "scale4c_branch2c"
    type: "Scale"
    scale_param {
        bias_term: true
    }
}

layer {
    bottom: "res4b"
    bottom: "res4c_branch2c"
    top: "res4c"
    name: "res4c"
    type: "Eltwise"
}

layer {
    bottom: "res4c"
    top: "res4c"
    name: "res4c_relu"
    type: "ReLU"
}

layer {
    bottom: "res4c"
    top: "res4d_branch2a"
    name: "res4d_branch2a"
    type: "Convolution"
    convolution_param {
        num_output: 256
        kernel_size: 1
        pad: 0
        stride: 1
        bias_term: false
    }
}

layer {
    bottom: "res4d_branch2a"
    top: "res4d_branch2a"
    name: "bn4d_branch2a"
    type: "BatchNorm"
    batch_norm_param {
        use_global_stats: true
    }
}

layer {
    bottom: "res4d_branch2a"
    top: "res4d_branch2a"
    name: "scale4d_branch2a"
    type: "Scale"
    scale_param {
        bias_term: true
    }
}

layer {
    bottom: "res4d_branch2a"
    top: "res4d_branch2a"
    name: "res4d_branch2a_relu"
    type: "ReLU"
}

layer {
    bottom: "res4d_branch2a"
    top: "res4d_branch2b"
    name: "res4d_branch2b"
    type: "Convolution"
    convolution_param {
        num_output: 256
        kernel_size: 3
        pad: 1
        stride: 1
        bias_term: false
    }
}

layer {
    bottom: "res4d_branch2b"
    top: "res4d_branch2b"
    name: "bn4d_branch2b"
    type: "BatchNorm"
    batch_norm_param {
        use_global_stats: true
    }
}

layer {
    bottom: "res4d_branch2b"
    top: "res4d_branch2b"
    name: "scale4d_branch2b"
    type: "Scale"
    scale_param {
        bias_term: true
    }
}

layer {
    bottom: "res4d_branch2b"
    top: "res4d_branch2b"
    name: "res4d_branch2b_relu"
    type: "ReLU"
}

layer {
    bottom: "res4d_branch2b"
    top: "res4d_branch2c"
    name: "res4d_branch2c"
    type: "Convolution"
    convolution_param {
        num_output: 1024
        kernel_size: 1
        pad: 0
        stride: 1
        bias_term: false
    }
}

layer {
    bottom: "res4d_branch2c"
    top: "res4d_branch2c"
    name: "bn4d_branch2c"
    type: "BatchNorm"
    batch_norm_param {
        use_global_stats: true
    }
}

layer {
    bottom: "res4d_branch2c"
    top: "res4d_branch2c"
    name: "scale4d_branch2c"
    type: "Scale"
    scale_param {
        bias_term: true
    }
}

layer {
    bottom: "res4c"
    bottom: "res4d_branch2c"
    top: "res4d"
    name: "res4d"
    type: "Eltwise"
}

layer {
    bottom: "res4d"
    top: "res4d"
    name: "res4d_relu"
    type: "ReLU"
}

layer {
    bottom: "res4d"
    top: "res4e_branch2a"
    name: "res4e_branch2a"
    type: "Convolution"
    convolution_param {
        num_output: 256
        kernel_size: 1
        pad: 0
        stride: 1
        bias_term: false
    }
}

layer {
    bottom: "res4e_branch2a"
    top: "res4e_branch2a"
    name: "bn4e_branch2a"
    type: "BatchNorm"
    batch_norm_param {
        use_global_stats: true
    }
}

layer {
    bottom: "res4e_branch2a"
    top: "res4e_branch2a"
    name: "scale4e_branch2a"
    type: "Scale"
    scale_param {
        bias_term: true
    }
}

layer {
    bottom: "res4e_branch2a"
    top: "res4e_branch2a"
    name: "res4e_branch2a_relu"
    type: "ReLU"
}

layer {
    bottom: "res4e_branch2a"
    top: "res4e_branch2b"
    name: "res4e_branch2b"
    type: "Convolution"
    convolution_param {
        num_output: 256
        kernel_size: 3
        pad: 1
        stride: 1
        bias_term: false
    }
}

layer {
    bottom: "res4e_branch2b"
    top: "res4e_branch2b"
    name: "bn4e_branch2b"
    type: "BatchNorm"
    batch_norm_param {
        use_global_stats: true
    }
}

layer {
    bottom: "res4e_branch2b"
    top: "res4e_branch2b"
    name: "scale4e_branch2b"
    type: "Scale"
    scale_param {
        bias_term: true
    }
}

layer {
    bottom: "res4e_branch2b"
    top: "res4e_branch2b"
    name: "res4e_branch2b_relu"
    type: "ReLU"
}

layer {
    bottom: "res4e_branch2b"
    top: "res4e_branch2c"
    name: "res4e_branch2c"
    type: "Convolution"
    convolution_param {
        num_output: 1024
        kernel_size: 1
        pad: 0
        stride: 1
        bias_term: false
    }
}

layer {
    bottom: "res4e_branch2c"
    top: "res4e_branch2c"
    name: "bn4e_branch2c"
    type: "BatchNorm"
    batch_norm_param {
        use_global_stats: true
    }
}

layer {
    bottom: "res4e_branch2c"
    top: "res4e_branch2c"
    name: "scale4e_branch2c"
    type: "Scale"
    scale_param {
        bias_term: true
    }
}

layer {
    bottom: "res4d"
    bottom: "res4e_branch2c"
    top: "res4e"
    name: "res4e"
    type: "Eltwise"
}

layer {
    bottom: "res4e"
    top: "res4e"
    name: "res4e_relu"
    type: "ReLU"
}

layer {
    bottom: "res4e"
    top: "res4f_branch2a"
    name: "res4f_branch2a"
    type: "Convolution"
    convolution_param {
        num_output: 256
        kernel_size: 1
        pad: 0
        stride: 1
        bias_term: false
    }
}

layer {
    bottom: "res4f_branch2a"
    top: "res4f_branch2a"
    name: "bn4f_branch2a"
    type: "BatchNorm"
    batch_norm_param {
        use_global_stats: true
    }
}

layer {
    bottom: "res4f_branch2a"
    top: "res4f_branch2a"
    name: "scale4f_branch2a"
    type: "Scale"
    scale_param {
        bias_term: true
    }
}

layer {
    bottom: "res4f_branch2a"
    top: "res4f_branch2a"
    name: "res4f_branch2a_relu"
    type: "ReLU"
}

layer {
    bottom: "res4f_branch2a"
    top: "res4f_branch2b"
    name: "res4f_branch2b"
    type: "Convolution"
    convolution_param {
        num_output: 256
        kernel_size: 3
        pad: 1
        stride: 1
        bias_term: false
    }
}

layer {
    bottom: "res4f_branch2b"
    top: "res4f_branch2b"
    name: "bn4f_branch2b"
    type: "BatchNorm"
    batch_norm_param {
        use_global_stats: true
    }
}

layer {
    bottom: "res4f_branch2b"
    top: "res4f_branch2b"
    name: "scale4f_branch2b"
    type: "Scale"
    scale_param {
        bias_term: true
    }
}

layer {
    bottom: "res4f_branch2b"
    top: "res4f_branch2b"
    name: "res4f_branch2b_relu"
    type: "ReLU"
}

layer {
    bottom: "res4f_branch2b"
    top: "res4f_branch2c"
    name: "res4f_branch2c"
    type: "Convolution"
    convolution_param {
        num_output: 1024
        kernel_size: 1
        pad: 0
        stride: 1
        bias_term: false
    }
}

layer {
    bottom: "res4f_branch2c"
    top: "res4f_branch2c"
    name: "bn4f_branch2c"
    type: "BatchNorm"
    batch_norm_param {
        use_global_stats: true
    }
}

layer {
    bottom: "res4f_branch2c"
    top: "res4f_branch2c"
    name: "scale4f_branch2c"
    type: "Scale"
    scale_param {
        bias_term: true
    }
}

layer {
    bottom: "res4e"
    bottom: "res4f_branch2c"
    top: "res4f"
    name: "res4f"
    type: "Eltwise"
}

layer {
    bottom: "res4f"
    top: "res4f"
    name: "res4f_relu"
    type: "ReLU"
}

layer {
    bottom: "res4f"
    top: "res5a_branch1"
    name: "res5a_branch1"
    type: "Convolution"
    convolution_param {
        num_output: 2048
        kernel_size: 1
        pad: 0
        stride: 2
        bias_term: false
    }
}

layer {
    bottom: "res5a_branch1"
    top: "res5a_branch1"
    name: "bn5a_branch1"
    type: "BatchNorm"
    batch_norm_param {
        use_global_stats: true
    }
}

layer {
    bottom: "res5a_branch1"
    top: "res5a_branch1"
    name: "scale5a_branch1"
    type: "Scale"
    scale_param {
        bias_term: true
    }
}

layer {
    bottom: "res4f"
    top: "res5a_branch2a"
    name: "res5a_branch2a"
    type: "Convolution"
    convolution_param {
        num_output: 512
        kernel_size: 1
        pad: 0
        stride: 2
        bias_term: false
    }
}

layer {
    bottom: "res5a_branch2a"
    top: "res5a_branch2a"
    name: "bn5a_branch2a"
    type: "BatchNorm"
    batch_norm_param {
        use_global_stats: true
    }
}

layer {
    bottom: "res5a_branch2a"
    top: "res5a_branch2a"
    name: "scale5a_branch2a"
    type: "Scale"
    scale_param {
        bias_term: true
    }
}

layer {
    bottom: "res5a_branch2a"
    top: "res5a_branch2a"
    name: "res5a_branch2a_relu"
    type: "ReLU"
}

layer {
    bottom: "res5a_branch2a"
    top: "res5a_branch2b"
    name: "res5a_branch2b"
    type: "Convolution"
    convolution_param {
        num_output: 512
        kernel_size: 3
        pad: 1
        stride: 1
        bias_term: false
    }
}

layer {
    bottom: "res5a_branch2b"
    top: "res5a_branch2b"
    name: "bn5a_branch2b"
    type: "BatchNorm"
    batch_norm_param {
        use_global_stats: true
    }
}

layer {
    bottom: "res5a_branch2b"
    top: "res5a_branch2b"
    name: "scale5a_branch2b"
    type: "Scale"
    scale_param {
        bias_term: true
    }
}

layer {
    bottom: "res5a_branch2b"
    top: "res5a_branch2b"
    name: "res5a_branch2b_relu"
    type: "ReLU"
}

layer {
    bottom: "res5a_branch2b"
    top: "res5a_branch2c"
    name: "res5a_branch2c"
    type: "Convolution"
    convolution_param {
        num_output: 2048
        kernel_size: 1
        pad: 0
        stride: 1
        bias_term: false
    }
}

layer {
    bottom: "res5a_branch2c"
    top: "res5a_branch2c"
    name: "bn5a_branch2c"
    type: "BatchNorm"
    batch_norm_param {
        use_global_stats: true
    }
}

layer {
    bottom: "res5a_branch2c"
    top: "res5a_branch2c"
    name: "scale5a_branch2c"
    type: "Scale"
    scale_param {
        bias_term: true
    }
}

layer {
    bottom: "res5a_branch1"
    bottom: "res5a_branch2c"
    top: "res5a"
    name: "res5a"
    type: "Eltwise"
}

layer {
    bottom: "res5a"
    top: "res5a"
    name: "res5a_relu"
    type: "ReLU"
}

layer {
    bottom: "res5a"
    top: "res5b_branch2a"
    name: "res5b_branch2a"
    type: "Convolution"
    convolution_param {
        num_output: 512
        kernel_size: 1
        pad: 0
        stride: 1
        bias_term: false
    }
}

layer {
    bottom: "res5b_branch2a"
    top: "res5b_branch2a"
    name: "bn5b_branch2a"
    type: "BatchNorm"
    batch_norm_param {
        use_global_stats: true
    }
}

layer {
    bottom: "res5b_branch2a"
    top: "res5b_branch2a"
    name: "scale5b_branch2a"
    type: "Scale"
    scale_param {
        bias_term: true
    }
}

layer {
    bottom: "res5b_branch2a"
    top: "res5b_branch2a"
    name: "res5b_branch2a_relu"
    type: "ReLU"
}

layer {
    bottom: "res5b_branch2a"
    top: "res5b_branch2b"
    name: "res5b_branch2b"
    type: "Convolution"
    convolution_param {
        num_output: 512
        kernel_size: 3
        pad: 1
        stride: 1
        bias_term: false
    }
}

layer {
    bottom: "res5b_branch2b"
    top: "res5b_branch2b"
    name: "bn5b_branch2b"
    type: "BatchNorm"
    batch_norm_param {
        use_global_stats: true
    }
}

layer {
    bottom: "res5b_branch2b"
    top: "res5b_branch2b"
    name: "scale5b_branch2b"
    type: "Scale"
    scale_param {
        bias_term: true
    }
}

layer {
    bottom: "res5b_branch2b"
    top: "res5b_branch2b"
    name: "res5b_branch2b_relu"
    type: "ReLU"
}

layer {
    bottom: "res5b_branch2b"
    top: "res5b_branch2c"
    name: "res5b_branch2c"
    type: "Convolution"
    convolution_param {
        num_output: 2048
        kernel_size: 1
        pad: 0
        stride: 1
        bias_term: false
    }
}

layer {
    bottom: "res5b_branch2c"
    top: "res5b_branch2c"
    name: "bn5b_branch2c"
    type: "BatchNorm"
    batch_norm_param {
        use_global_stats: true
    }
}

layer {
    bottom: "res5b_branch2c"
    top: "res5b_branch2c"
    name: "scale5b_branch2c"
    type: "Scale"
    scale_param {
        bias_term: true
    }
}

layer {
    bottom: "res5a"
    bottom: "res5b_branch2c"
    top: "res5b"
    name: "res5b"
    type: "Eltwise"
}

layer {
    bottom: "res5b"
    top: "res5b"
    name: "res5b_relu"
    type: "ReLU"
}

layer {
    bottom: "res5b"
    top: "res5c_branch2a"
    name: "res5c_branch2a"
    type: "Convolution"
    convolution_param {
        num_output: 512
        kernel_size: 1
        pad: 0
        stride: 1
        bias_term: false
    }
}

layer {
    bottom: "res5c_branch2a"
    top: "res5c_branch2a"
    name: "bn5c_branch2a"
    type: "BatchNorm"
    batch_norm_param {
        use_global_stats: true
    }
}

layer {
    bottom: "res5c_branch2a"
    top: "res5c_branch2a"
    name: "scale5c_branch2a"
    type: "Scale"
    scale_param {
        bias_term: true
    }
}

layer {
    bottom: "res5c_branch2a"
    top: "res5c_branch2a"
    name: "res5c_branch2a_relu"
    type: "ReLU"
}

layer {
    bottom: "res5c_branch2a"
    top: "res5c_branch2b"
    name: "res5c_branch2b"
    type: "Convolution"
    convolution_param {
        num_output: 512
        kernel_size: 3
        pad: 1
        stride: 1
        bias_term: false
    }
}

layer {
    bottom: "res5c_branch2b"
    top: "res5c_branch2b"
    name: "bn5c_branch2b"
    type: "BatchNorm"
    batch_norm_param {
        use_global_stats: true
    }
}

layer {
    bottom: "res5c_branch2b"
    top: "res5c_branch2b"
    name: "scale5c_branch2b"
    type: "Scale"
    scale_param {
        bias_term: true
    }
}

layer {
    bottom: "res5c_branch2b"
    top: "res5c_branch2b"
    name: "res5c_branch2b_relu"
    type: "ReLU"
}

layer {
    bottom: "res5c_branch2b"
    top: "res5c_branch2c"
    name: "res5c_branch2c"
    type: "Convolution"
    convolution_param {
        num_output: 2048
        kernel_size: 1
        pad: 0
        stride: 1
        bias_term: false
    }
}

layer {
    bottom: "res5c_branch2c"
    top: "res5c_branch2c"
    name: "bn5c_branch2c"
    type: "BatchNorm"
    batch_norm_param {
        use_global_stats: true
    }
}

layer {
    bottom: "res5c_branch2c"
    top: "res5c_branch2c"
    name: "scale5c_branch2c"
    type: "Scale"
    scale_param {
        bias_term: true
    }
}

layer {
    bottom: "res5b"
    bottom: "res5c_branch2c"
    top: "res5c"
    name: "res5c"
    type: "Eltwise"
}

layer {
    bottom: "res5c"
    top: "res5c"
    name: "res5c_relu"
    type: "ReLU"
}

layer {
    bottom: "res5c"
    top: "pool5"
    name: "pool5"
    type: "Pooling"
    pooling_param {
        kernel_size: 7
        stride: 1
        pool: AVE
    }
}

layer {
    bottom: "pool5"
    top: "fc204"
    name: "fc204"
    type: "InnerProduct"
    inner_product_param {
        num_output: 204
    }
}
layer {
  name: "accuracy-1"
  type: "Accuracy"
  bottom: "fc204"
  bottom: "label"
  top: "accuracy-1"
  include {
    phase: TEST
  }
}
layer {
  name: "accuracy-5"
  type: "Accuracy"
  bottom: "fc204"
  bottom: "label"
  top: "accuracy-5"
  include {
    phase: TEST
  }
  accuracy_param {
    top_k:5
  }
}
#layer {
#  name: "loss"
#  type: "SoftmaxWithLoss"
#  bottom: "fc204"
#  bottom: "label"
#  top: "loss"
#}
#layer {
#   bottom: "fc204"
#   top: "prob"
#   name: "prob"
#   type: "Softmax"
#}

最后

以上就是冷酷钥匙为你收集整理的caffe Resnet-50 finetune 所有代码+需要注意的地方的全部内容,希望文章能够帮你解决caffe Resnet-50 finetune 所有代码+需要注意的地方所遇到的程序开发问题。

如果觉得靠谱客网站的内容还不错,欢迎将靠谱客网站推荐给程序员好友。

本图文内容来源于网友提供,作为学习参考使用,或来自网络收集整理,版权属于原作者所有。
点赞(65)

评论列表共有 0 条评论

立即
投稿
返回
顶部